Linear Logic Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > LLPE Home > Th. List > ax-ref | Structured version |
Description: x is free in [a ≫ x]. |
Ref | Expression |
---|---|
ax-ref | ⊦ (νx[a ≫ x] 𝜑 ⊸ [a ≫ x] 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . . 4 wff 𝜑 | |
2 | vx | . . . 4 var x | |
3 | va | . . . . 5 var a | |
4 | 3 | nvar 203 | . . . 4 nilad a |
5 | 1, 2, 4 | wre 205 | . . 3 wff [a ≫ x] 𝜑 |
6 | 5, 2 | wnu 206 | . 2 wff νx[a ≫ x] 𝜑 |
7 | 6, 5 | wli 61 | 1 wff (νx[a ≫ x] 𝜑 ⊸ [a ≫ x] 𝜑) |
Colors of variables: wff var nilad |
This axiom is referenced by: (None) |
Copyright terms: Public domain | W3C validator |