Linear Logic Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > LLPE Home > Th. List > ax-subre1 | Structured version |
Ref | Expression |
---|---|
ax-subre1 | ⊦ ([x ≔ y] [x ≫ a] 𝜑 ⧟ [x ≔ y] [y ≫ a] 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . . 4 wff 𝜑 | |
2 | va | . . . 4 var a | |
3 | vx | . . . . 5 var x | |
4 | 3 | nvar 203 | . . . 4 nilad x |
5 | 1, 2, 4 | wre 205 | . . 3 wff [x ≫ a] 𝜑 |
6 | vy | . . . 4 var y | |
7 | 6 | nvar 203 | . . 3 nilad y |
8 | 5, 3, 7 | wsub 207 | . 2 wff [x ≔ y] [x ≫ a] 𝜑 |
9 | 1, 2, 7 | wre 205 | . . 3 wff [y ≫ a] 𝜑 |
10 | 9, 3, 7 | wsub 207 | . 2 wff [x ≔ y] [y ≫ a] 𝜑 |
11 | 8, 10 | wlb 55 | 1 wff ([x ≔ y] [x ≫ a] 𝜑 ⧟ [x ≔ y] [y ≫ a] 𝜑) |
Colors of variables: wff var nilad |
This axiom is referenced by: (None) |
Copyright terms: Public domain | W3C validator |