LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  df-limpl Structured version  

Definition df-limpl 313
Description: Church-encoding of logical conjunction.
Assertion
Ref Expression
df-limpl Impl = λaλb(baTrue)
Distinct variable group:   a,b

Detailed syntax breakdown of Definition df-limpl
StepHypRef Expression
1 nlimpl 308 . 2 nilad Impl
2 va . . 3 var a
3 vb . . . 4 var b
43nvar 203 . . . . 5 nilad b
5 ntru 297 . . . . 5 nilad True
62nvar 203 . . . . 5 nilad a
74, 5, 6nov 284 . . . 4 nilad (baTrue)
83, 7nla 279 . . 3 nilad λb(baTrue)
92, 8nla 279 . 2 nilad λaλb(baTrue)
101, 9weq 246 1 wff Impl = λaλb(baTrue)
Colors of variables: wff var nilad
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator