LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  df-nab Structured version  

Definition df-nab 267
Description: Using a nilad abstraction is the same as running the associated process 𝜑 and using its "return value" instead. Since the input to all other operators can be modeled using , this is enough to fully describe nilad abstractions.

Unlike most defined operators, the nilad abstraction cannot directly be expanded to primitive symbols. Despite this, it is always possible to mechanically eliminate nilads from any expression that contains them by simply moving the process 𝜑 to before the variable y is used.

Assertion
Ref Expression
df-nab ([x ≪ {y | 𝜑}] 𝜓 ⧟ (𝜑 ⊗ [ya] [xa] 𝜓))
Distinct variable groups:   𝜑,a   𝜓,a   a,x   a,y

Detailed syntax breakdown of Definition df-nab
StepHypRef Expression
1 wps . . 3 wff 𝜓
2 vx . . . 4 var x
32nvar 203 . . 3 nilad x
4 wph . . . 4 wff 𝜑
5 vy . . . 4 var y
64, 5nnab 266 . . 3 nilad {y | 𝜑}
71, 3, 6wse 204 . 2 wff [x ≪ {y | 𝜑}] 𝜓
8 va . . . . . 6 var a
98nvar 203 . . . . 5 nilad a
101, 3, 9wse 204 . . . 4 wff [xa] 𝜓
115nvar 203 . . . 4 nilad y
1210, 8, 11wre 205 . . 3 wff [ya] [xa] 𝜓
134, 12wmc 105 . 2 wff (𝜑 ⊗ [ya] [xa] 𝜓)
147, 13wlb 55 1 wff ([x ≪ {y | 𝜑}] 𝜓 ⧟ (𝜑 ⊗ [ya] [xa] 𝜓))
Colors of variables: wff var nilad
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator