Detailed syntax breakdown of Definition df-nsub
Step | Hyp | Ref
| Expression |
1 | | vx |
. . 3
var x |
2 | | nf |
. . 3
nilad F |
3 | | ny |
. . 3
nilad Y |
4 | 1, 2, 3 | nsub 277 |
. 2
nilad [x ≔
Y] F |
5 | | wone 103 |
. . . . . . 7
wff 1 |
6 | | vr |
. . . . . . . 8
var r |
7 | 6 | nvar 203 |
. . . . . . 7
nilad r |
8 | | vf |
. . . . . . . 8
var f |
9 | 8 | nvar 203 |
. . . . . . 7
nilad f |
10 | 5, 7, 9 | wse 204 |
. . . . . 6
wff [r ≪
f] 1 |
11 | 10, 8, 2 | wre 205 |
. . . . 5
wff [F ≫
f] [r ≪ f] 1 |
12 | | vy |
. . . . . 6
var y |
13 | 12 | nvar 203 |
. . . . 5
nilad y |
14 | 11, 1, 13 | wsub 207 |
. . . 4
wff [x ≔
y] [F ≫ f] [r ≪ f] 1 |
15 | | va |
. . . 4
var a |
16 | 14, 15 | wnu 206 |
. . 3
wff νa[x ≔ y] [F ≫ f] [r ≪ f] 1 |
17 | 16, 6 | nnab 266 |
. 2
nilad {r |
νa[x ≔ y] [F ≫ f] [r ≪ f] 1} |
18 | 4, 17 | weq 246 |
1
wff [x ≔
Y] F = {r | νa[x
≔ y] [F ≫ f] [r ≪ f] 1} |