LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  df-ss Structured version  

Definition df-ss 290
Description: Definition of the S combinator.
Assertion
Ref Expression
df-ss S = λaλbλc((b' a)' (c' a))
Distinct variable group:   a,b,c

Detailed syntax breakdown of Definition df-ss
StepHypRef Expression
1 nss 286 . 2 nilad S
2 va . . 3 var a
3 vb . . . 4 var b
4 vc . . . . 5 var c
53nvar 203 . . . . . . 7 nilad b
62nvar 203 . . . . . . 7 nilad a
75, 6nfv 281 . . . . . 6 nilad (b' a)
84nvar 203 . . . . . . 7 nilad c
98, 6nfv 281 . . . . . 6 nilad (c' a)
107, 9nfv 281 . . . . 5 nilad ((b' a)' (c' a))
114, 10nla 279 . . . 4 nilad λc((b' a)' (c' a))
123, 11nla 279 . . 3 nilad λbλc((b' a)' (c' a))
132, 12nla 279 . 2 nilad λaλbλc((b' a)' (c' a))
141, 13weq 246 1 wff S = λaλbλc((b' a)' (c' a))
Colors of variables: wff var nilad
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator