LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  dfnab2 Structured version  

Theorem dfnab2 269
Description: Read from a nilad.
Assertion
Ref Expression
dfnab2 ([{x | 𝜑} ≫ y] 𝜓 ⧟ (𝜑 ⊗ [xa] [ay] 𝜓))
Distinct variable groups:   𝜑,a   𝜓,a   a,x   a,y

Proof of Theorem dfnab2
StepHypRef Expression
Colors of variables: wff var nilad
Syntax hints:  wlb 55  wmc 105  nvar 203  [wre 205  {nnab 266
 WARNING: This theorem has an incomplete proof.
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator