LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  eqsymd Structured version  

Theorem eqsymd 257
Description: Equality is symmetric. Deduction for eqsym 251.
Hypothesis
Ref Expression
eqsymd.1 (𝜑X = Y)
Assertion
Ref Expression
eqsymd (𝜑Y = X)

Proof of Theorem eqsymd
StepHypRef Expression
Colors of variables: wff var nilad
Syntax hints:  wli 61   = weq 246
 WARNING: This theorem has an incomplete proof.
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator