LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  eqsymi Structured version  

Theorem eqsymi 254
Description: Equality is symmetric. Inference for eqsym 251.
Hypothesis
Ref Expression
eqsymi.1 X = Y
Assertion
Ref Expression
eqsymi Y = X

Proof of Theorem eqsymi
StepHypRef Expression
Colors of variables: wff var nilad
Syntax hints:   = weq 246
 WARNING: This theorem has an incomplete proof.
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator