LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  ax-aleq Structured version  

Axiom ax-aleq 333
Description: Quantified equality.
Assertion
Ref Expression
ax-aleq (~ x = y ⊸ (y = z ⊸ ∀x y = z))

Detailed syntax breakdown of Axiom ax-aleq
StepHypRef Expression
1 vx . . . . 5 var x
21nvar 203 . . . 4 nilad x
3 vy . . . . 5 var y
43nvar 203 . . . 4 nilad y
52, 4weq 246 . . 3 wff x = y
65wneg 3 . 2 wff ~ x = y
7 vz . . . . 5 var z
87nvar 203 . . . 4 nilad z
94, 8weq 246 . . 3 wff y = z
109, 1wal 318 . . 3 wffx y = z
119, 10wli 61 . 2 wff (y = z ⊸ ∀x y = z)
126, 11wli 61 1 wff (~ x = y ⊸ (y = z ⊸ ∀x y = z))
Colors of variables: wff var nilad
This axiom is referenced by: (None)
  Copyright terms: Public domain W3C validator