Linear Logic Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > LLPE Home > Th. List > ax-aleq | Structured version |
Description: Quantified equality. |
Ref | Expression |
---|---|
ax-aleq | ⊦ (~ x = y ⊸ (y = z ⊸ ∀x y = z)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . . . 5 var x | |
2 | 1 | nvar 203 | . . . 4 nilad x |
3 | vy | . . . . 5 var y | |
4 | 3 | nvar 203 | . . . 4 nilad y |
5 | 2, 4 | weq 246 | . . 3 wff x = y |
6 | 5 | wneg 3 | . 2 wff ~ x = y |
7 | vz | . . . . 5 var z | |
8 | 7 | nvar 203 | . . . 4 nilad z |
9 | 4, 8 | weq 246 | . . 3 wff y = z |
10 | 9, 1 | wal 318 | . . 3 wff ∀x y = z |
11 | 9, 10 | wli 61 | . 2 wff (y = z ⊸ ∀x y = z) |
12 | 6, 11 | wli 61 | 1 wff (~ x = y ⊸ (y = z ⊸ ∀x y = z)) |
Colors of variables: wff var nilad |
This axiom is referenced by: (None) |
Copyright terms: Public domain | W3C validator |