Linear Logic Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > LLPE Home > Th. List > ax-sub | Structured version |
Description: Axiom of variable substitution. |
Ref | Expression |
---|---|
ax-sub | ⊦ (x = y ⊸ (∀y𝜑 ⊸ ∀x(x = y ⊸ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . . 4 var x | |
2 | 1 | nvar 203 | . . 3 nilad x |
3 | vy | . . . 4 var y | |
4 | 3 | nvar 203 | . . 3 nilad y |
5 | 2, 4 | weq 246 | . 2 wff x = y |
6 | wph | . . . 4 wff 𝜑 | |
7 | 6, 3 | wal 318 | . . 3 wff ∀y𝜑 |
8 | 5, 6 | wli 61 | . . . 4 wff (x = y ⊸ 𝜑) |
9 | 8, 1 | wal 318 | . . 3 wff ∀x(x = y ⊸ 𝜑) |
10 | 7, 9 | wli 61 | . 2 wff (∀y𝜑 ⊸ ∀x(x = y ⊸ 𝜑)) |
11 | 5, 10 | wli 61 | 1 wff (x = y ⊸ (∀y𝜑 ⊸ ∀x(x = y ⊸ 𝜑))) |
Colors of variables: wff var nilad |
This axiom is referenced by: (None) |
Copyright terms: Public domain | W3C validator |