LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  ax-eleq1 Structured version  

Axiom ax-eleq1 328
Description: Left equality for binary predicate. This consumes the equality.
Assertion
Ref Expression
ax-eleq1 (x = y ⊸ (xzyz))

Detailed syntax breakdown of Axiom ax-eleq1
StepHypRef Expression
1 vx . . . 4 var x
21nvar 203 . . 3 nilad x
3 vy . . . 4 var y
43nvar 203 . . 3 nilad y
52, 4weq 246 . 2 wff x = y
6 vz . . . 4 var z
71, 6wel 322 . . 3 wff xz
83, 6wel 322 . . 3 wff yz
97, 8wli 61 . 2 wff (xzyz)
105, 9wli 61 1 wff (x = y ⊸ (xzyz))
Colors of variables: wff var nilad
This axiom is referenced by: (None)
  Copyright terms: Public domain W3C validator