| Linear Logic Proof Explorer |
< Previous
Next >
Nearby theorems |
|
| Mirrors > Home > LLPE Home > Th. List > ax-eleq1 | Structured version | |
| Description: Left equality for binary predicate. This consumes the equality. |
| Ref | Expression |
|---|---|
| ax-eleq1 | ⊦ (x = y ⊸ (x ∈ z ⊸ y ∈ z)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . . 4 var x | |
| 2 | 1 | nvar 203 | . . 3 nilad x |
| 3 | vy | . . . 4 var y | |
| 4 | 3 | nvar 203 | . . 3 nilad y |
| 5 | 2, 4 | weq 246 | . 2 wff x = y |
| 6 | vz | . . . 4 var z | |
| 7 | 1, 6 | wel 322 | . . 3 wff x ∈ z |
| 8 | 3, 6 | wel 322 | . . 3 wff y ∈ z |
| 9 | 7, 8 | wli 61 | . 2 wff (x ∈ z ⊸ y ∈ z) |
| 10 | 5, 9 | wli 61 | 1 wff (x = y ⊸ (x ∈ z ⊸ y ∈ z)) |
| Colors of variables: wff var nilad |
| This axiom is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |