Linear Logic Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > LLPE Home > Th. List > ax-eleq1 | Structured version |
Description: Left equality for binary predicate. This consumes the equality. |
Ref | Expression |
---|---|
ax-eleq1 | ⊦ (x = y ⊸ (x ∈ z ⊸ y ∈ z)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . . 4 var x | |
2 | 1 | nvar 203 | . . 3 nilad x |
3 | vy | . . . 4 var y | |
4 | 3 | nvar 203 | . . 3 nilad y |
5 | 2, 4 | weq 246 | . 2 wff x = y |
6 | vz | . . . 4 var z | |
7 | 1, 6 | wel 322 | . . 3 wff x ∈ z |
8 | 3, 6 | wel 322 | . . 3 wff y ∈ z |
9 | 7, 8 | wli 61 | . 2 wff (x ∈ z ⊸ y ∈ z) |
10 | 5, 9 | wli 61 | 1 wff (x = y ⊸ (x ∈ z ⊸ y ∈ z)) |
Colors of variables: wff var nilad |
This axiom is referenced by: (None) |
Copyright terms: Public domain | W3C validator |