Linear Logic Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > LLPE Home > Th. List > ax-eqeu | Structured version |
Description: Equality is Euclidean. Combined with ax-ex 326, this implies that equality is symmetric and transitive. |
Ref | Expression |
---|---|
ax-eqeu | ⊦ (x = y ⊸ (x = z ⊸ y = z)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . . 4 var x | |
2 | 1 | nvar 203 | . . 3 nilad x |
3 | vy | . . . 4 var y | |
4 | 3 | nvar 203 | . . 3 nilad y |
5 | 2, 4 | weq 246 | . 2 wff x = y |
6 | vz | . . . . 5 var z | |
7 | 6 | nvar 203 | . . . 4 nilad z |
8 | 2, 7 | weq 246 | . . 3 wff x = z |
9 | 4, 7 | weq 246 | . . 3 wff y = z |
10 | 8, 9 | wli 61 | . 2 wff (x = z ⊸ y = z) |
11 | 5, 10 | wli 61 | 1 wff (x = y ⊸ (x = z ⊸ y = z)) |
Colors of variables: wff var nilad |
This axiom is referenced by: (None) |
Copyright terms: Public domain | W3C validator |