LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  ax-eqeu Structured version  

Axiom ax-eqeu 327
Description: Equality is Euclidean. Combined with ax-ex 326, this implies that equality is symmetric and transitive.
Assertion
Ref Expression
ax-eqeu (x = y ⊸ (x = zy = z))

Detailed syntax breakdown of Axiom ax-eqeu
StepHypRef Expression
1 vx . . . 4 var x
21nvar 203 . . 3 nilad x
3 vy . . . 4 var y
43nvar 203 . . 3 nilad y
52, 4weq 246 . 2 wff x = y
6 vz . . . . 5 var z
76nvar 203 . . . 4 nilad z
82, 7weq 246 . . 3 wff x = z
94, 7weq 246 . . 3 wff y = z
108, 9wli 61 . 2 wff (x = zy = z)
115, 10wli 61 1 wff (x = y ⊸ (x = zy = z))
Colors of variables: wff var nilad
This axiom is referenced by: (None)
  Copyright terms: Public domain W3C validator