LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  df-eq Structured version  

Definition df-eq 247
Description: Definition of channel equality. Two nilads are equivalent if, when written to an arbitrary channel, that channel behaves the same way. We measure this by seeing if we can successfully read from it.
Assertion
Ref Expression
df-eq (X = Y ⧟ ∇a([aX] [ab] 1 ⧟ [aY] [ab] 1))

Detailed syntax breakdown of Definition df-eq
StepHypRef Expression
1 nx . . 3 nilad X
2 ny . . 3 nilad Y
31, 2weq 246 . 2 wff X = Y
4 wone 103 . . . . . 6 wff 1
5 vb . . . . . 6 var b
6 va . . . . . . 7 var a
76nvar 203 . . . . . 6 nilad a
84, 5, 7wre 205 . . . . 5 wff [ab] 1
98, 7, 1wse 204 . . . 4 wff [aX] [ab] 1
108, 7, 2wse 204 . . . 4 wff [aY] [ab] 1
119, 10wlb 55 . . 3 wff ([aX] [ab] 1 ⧟ [aY] [ab] 1)
1211, 6wnnu 242 . 2 wffa([aX] [ab] 1 ⧟ [aY] [ab] 1)
133, 12wlb 55 1 wff (X = Y ⧟ ∇a([aX] [ab] 1 ⧟ [aY] [ab] 1))
Colors of variables: wff var nilad
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator