LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  eqpe Structured version  

Theorem eqpe 248
Description: Equality can be !-ified.
Assertion
Ref Expression
eqpe (X = Y ⊸ ! X = Y)

Proof of Theorem eqpe
StepHypRef Expression
Colors of variables: wff var nilad
Syntax hints:  wli 61  ! wpe 148   = weq 246
 WARNING: This theorem has an incomplete proof.
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator