Detailed syntax breakdown of Definition df-fv
Step | Hyp | Ref
| Expression |
1 | | nf |
. . 3
nilad F |
2 | | nx |
. . 3
nilad X |
3 | 1, 2 | nfv 281 |
. 2
nilad (F' X) |
4 | | wone 103 |
. . . . . . . 8
wff 1 |
5 | | vr |
. . . . . . . . 9
var r |
6 | 5 | nvar 203 |
. . . . . . . 8
nilad r |
7 | | vy |
. . . . . . . . 9
var y |
8 | 7 | nvar 203 |
. . . . . . . 8
nilad y |
9 | 4, 6, 8 | wse 204 |
. . . . . . 7
wff [r ≪
y] 1 |
10 | | va |
. . . . . . . 8
var a |
11 | 10 | nvar 203 |
. . . . . . 7
nilad a |
12 | 9, 7, 11 | wre 205 |
. . . . . 6
wff [a ≫
y] [r ≪ y] 1 |
13 | 12, 11, 2 | wse 204 |
. . . . 5
wff [a ≪
X] [a ≫ y] [r ≪ y] 1 |
14 | 13, 1, 11 | wse 204 |
. . . 4
wff [F ≪
a] [a ≪ X] [a ≫ y] [r ≪ y] 1 |
15 | 14, 10 | wnu 206 |
. . 3
wff νa[F ≪ a] [a ≪ X] [a ≫ y] [r
≪ y] 1 |
16 | 15, 5 | nnab 266 |
. 2
nilad {r |
νa[F ≪ a] [a ≪ X] [a ≫ y] [r ≪ y] 1} |
17 | 3, 16 | weq 246 |
1
wff (F' X) = {r | νa[F ≪ a] [a ≪ X] [a ≫ y] [r ≪ y] 1} |