LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  df-la Structured version  

Definition df-la 280
Description: Definition of lambda abstraction. The lambda exposes a "handle" f which reads a temporary communication channel a. The resulting function's input x and output Y are passed along a. The ! exponential creates infinite instances of this function "provider", which can all run in parallel. Compare with df-fv 282 to see how this function is called.
Assertion
Ref Expression
df-la λxY = {νf | ! [fa] [ax] [aY] 1}
Distinct variable groups:   a,f,x   f,Y,a

Detailed syntax breakdown of Definition df-la
StepHypRef Expression
1 vx . . 3 var x
2 ny . . 3 nilad Y
31, 2nla 279 . 2 nilad λxY
4 wone 103 . . . . . . 7 wff 1
5 va . . . . . . . 8 var a
65nvar 203 . . . . . . 7 nilad a
74, 6, 2wse 204 . . . . . 6 wff [aY] 1
87, 1, 6wre 205 . . . . 5 wff [ax] [aY] 1
9 vf . . . . . 6 var f
109nvar 203 . . . . 5 nilad f
118, 5, 10wre 205 . . . 4 wff [fa] [ax] [aY] 1
1211wpe 148 . . 3 wff ! [fa] [ax] [aY] 1
1312, 9nvnab 271 . 2 niladf | ! [fa] [ax] [aY] 1}
143, 13weq 246 1 wff λxY = {νf | ! [fa] [ax] [aY] 1}
Colors of variables: wff var nilad
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator