| Linear Logic Proof Explorer |
< Previous
Next >
Nearby theorems |
|
| Mirrors > Home > LLPE Home > Th. List > df-la | Structured version | |
| Description: Definition of lambda abstraction. The lambda exposes a "handle" f which reads a temporary communication channel a. The resulting function's input x and output Y are passed along a. The ! exponential creates infinite instances of this function "provider", which can all run in parallel. Compare with df-fv 282 to see how this function is called. |
| Ref | Expression |
|---|---|
| df-la | ⊦ λxY = {νf | ! [f ≫ a] [a ≫ x] [a ≪ Y] 1} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . 3 var x | |
| 2 | ny | . . 3 nilad Y | |
| 3 | 1, 2 | nla 279 | . 2 nilad λxY |
| 4 | wone 103 | . . . . . . 7 wff 1 | |
| 5 | va | . . . . . . . 8 var a | |
| 6 | 5 | nvar 203 | . . . . . . 7 nilad a |
| 7 | 4, 6, 2 | wse 204 | . . . . . 6 wff [a ≪ Y] 1 |
| 8 | 7, 1, 6 | wre 205 | . . . . 5 wff [a ≫ x] [a ≪ Y] 1 |
| 9 | vf | . . . . . 6 var f | |
| 10 | 9 | nvar 203 | . . . . 5 nilad f |
| 11 | 8, 5, 10 | wre 205 | . . . 4 wff [f ≫ a] [a ≫ x] [a ≪ Y] 1 |
| 12 | 11 | wpe 148 | . . 3 wff ! [f ≫ a] [a ≫ x] [a ≪ Y] 1 |
| 13 | 12, 9 | nvnab 271 | . 2 nilad {νf | ! [f ≫ a] [a ≫ x] [a ≪ Y] 1} |
| 14 | 3, 13 | weq 246 | 1 wff λxY = {νf | ! [f ≫ a] [a ≫ x] [a ≪ Y] 1} |
| Colors of variables: wff var nilad |
| This definition is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |