LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  df-liff Structured version  

Definition df-liff 317
Description: Church-encoding of logical biconditional.
Assertion
Ref Expression
df-liff Iff = λaλb(ba(Not' b))
Distinct variable group:   a,b

Detailed syntax breakdown of Definition df-liff
StepHypRef Expression
1 nliff 312 . 2 nilad Iff
2 va . . 3 var a
3 vb . . . 4 var b
43nvar 203 . . . . 5 nilad b
5 nlnot 311 . . . . . 6 nilad Not
65, 4nfv 281 . . . . 5 nilad (Not' b)
72nvar 203 . . . . 5 nilad a
84, 6, 7nov 284 . . . 4 nilad (ba(Not' b))
93, 8nla 279 . . 3 nilad λb(ba(Not' b))
102, 9nla 279 . 2 nilad λaλb(ba(Not' b))
111, 10weq 246 1 wff Iff = λaλb(ba(Not' b))
Colors of variables: wff var nilad
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator