LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  df-lnot Structured version  

Definition df-lnot 316
Description: Church-encoding of logical negation.
Assertion
Ref Expression
df-lnot Not = λaλxλy(yax)
Distinct variable group:   a,x,y

Detailed syntax breakdown of Definition df-lnot
StepHypRef Expression
1 nlnot 311 . 2 nilad Not
2 va . . 3 var a
3 vx . . . 4 var x
4 vy . . . . 5 var y
54nvar 203 . . . . . 6 nilad y
63nvar 203 . . . . . 6 nilad x
72nvar 203 . . . . . 6 nilad a
85, 6, 7nov 284 . . . . 5 nilad (yax)
94, 8nla 279 . . . 4 nilad λy(yax)
103, 9nla 279 . . 3 nilad λxλy(yax)
112, 10nla 279 . 2 nilad λaλxλy(yax)
121, 11weq 246 1 wff Not = λaλxλy(yax)
Colors of variables: wff var nilad
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator