Linear Logic Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > LLPE Home > Th. List > df-lnot | Structured version |
Description: Church-encoding of logical negation. |
Ref | Expression |
---|---|
df-lnot | ⊦ Not = λaλxλy(yax) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nlnot 311 | . 2 nilad Not | |
2 | va | . . 3 var a | |
3 | vx | . . . 4 var x | |
4 | vy | . . . . 5 var y | |
5 | 4 | nvar 203 | . . . . . 6 nilad y |
6 | 3 | nvar 203 | . . . . . 6 nilad x |
7 | 2 | nvar 203 | . . . . . 6 nilad a |
8 | 5, 6, 7 | nov 284 | . . . . 5 nilad (yax) |
9 | 4, 8 | nla 279 | . . . 4 nilad λy(yax) |
10 | 3, 9 | nla 279 | . . 3 nilad λxλy(yax) |
11 | 2, 10 | nla 279 | . 2 nilad λaλxλy(yax) |
12 | 1, 11 | weq 246 | 1 wff Not = λaλxλy(yax) |
Colors of variables: wff var nilad |
This definition is referenced by: (None) |
Copyright terms: Public domain | W3C validator |