Linear Logic Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > LLPE Home > Th. List > ax-mdas | Structured version |
Description: ⅋ is associative. |
Ref | Expression |
---|---|
ax-mdas | ⊦ (~ ((𝜑 ⅋ 𝜓) ⅋ 𝜒) ⅋ (𝜑 ⅋ (𝜓 ⅋ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . . . 5 wff 𝜑 | |
2 | wps | . . . . 5 wff 𝜓 | |
3 | 1, 2 | wmd 2 | . . . 4 wff (𝜑 ⅋ 𝜓) |
4 | wch | . . . 4 wff 𝜒 | |
5 | 3, 4 | wmd 2 | . . 3 wff ((𝜑 ⅋ 𝜓) ⅋ 𝜒) |
6 | 5 | wneg 3 | . 2 wff ~ ((𝜑 ⅋ 𝜓) ⅋ 𝜒) |
7 | 2, 4 | wmd 2 | . . 3 wff (𝜓 ⅋ 𝜒) |
8 | 1, 7 | wmd 2 | . 2 wff (𝜑 ⅋ (𝜓 ⅋ 𝜒)) |
9 | 6, 8 | wmd 2 | 1 wff (~ ((𝜑 ⅋ 𝜓) ⅋ 𝜒) ⅋ (𝜑 ⅋ (𝜓 ⅋ 𝜒))) |
Colors of variables: wff var nilad |
This axiom is referenced by: mdasd 13 mdasi 14 mdasr 15 mdas 110 |
Copyright terms: Public domain | W3C validator |