Home Linear Logic Proof Explorer
Theorem List (p. 1 of 4)
< Previous  Next >

Mirrors  >  Metamath Home Page  >  LLPE Home Page  >  Theorem List Contents       This page: Page List

Theorem List for Linear Logic Proof Explorer - 1-100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
PART 1  Hilbert-style axiomatisation of Linear Logic

This is an implementation of Girard's linear logic based on Axioms and Models of Linear Logic by Wim H. Hesselink.

Thanks to the dual nature of linear logic, many of the operators are redundant. Only the , &, ?, and ~ operators and the units and are needed to construct any expression. The only problem is that to write the definitions of the composite operators, the linear biconditional is needed, which in turn depends on ~, , and &. Because of this, any proofs that use the composite operators are presented after all the axioms and definitions.

 
1.1  Basic stuff

Here the operators , , , &, ?, and ~ are defined. Later, the duals 1, , 0, , ! are defined, plus the implication operators , , and the intuitionistic operators , , ¬, , and .

Due to the way defenitions work in Metamath (i.e. they don't), my first priority is to get the linear biconditional working so that it can be used to define the other operators. Unfortunately, the definition of the linear biconditional depends on , &, and ~, so those need to be defined first. Proofs are generally most useful in the syllogism form (𝜑𝜓) → (𝜑𝜒), so I'll avoid proving stuff here only to prove it again once is defined.

Since linear implication is not available, inferences will be presented in deduction form (𝜑𝜓) ∧ (𝜑𝜒) → (𝜑𝜃). This is equivalent to (! 𝜓 ⊗ ! 𝜒) ⊸ 𝜃. This allows proofs to be used with the cut rule.

 
1.1.1  Multiplicatives

There are two multiplicative binary connectives: and . In the resource interpretation, these correspond to treating the resources involved in a parallel manner. Here we characterize , and df-mc 106 will define as its dual.

 
Syntaxwbot 1 Bottom, the unit of . In the resource interpretation, this represents an impossibility. Characterized by ax-ibot 4 and ax-ebot 5.
wff
 
Syntaxwmd 2 Par, multiplicative disjunction. In the resource interpretation, this represents resources that are to be used in parallel. Characterized by ax-init 7, ax-cut 6, ax-mdco 8, ax-mdas 9.
wff (𝜑𝜓)
 
Syntaxwneg 3 Linear negation. For any statement 𝜑, ~ 𝜑 is its dual. In the resource interpretation, this represents demand for something (sort of kind of). Combining 𝜑 and ~ 𝜑 yields .
wff ~ 𝜑
 
Axiomax-ibot 4 Add a . Inverse of ax-ebot 5.
𝜑        (⊥ ⅋ 𝜑)
 
Axiomax-ebot 5 Remove a . Inverse of ax-ibot 4.
(⊥ ⅋ 𝜑)        𝜑
 
Axiomax-cut 6 The cut rule is akin to syllogism in classical logic. It allows ~ 𝜑𝜓 to act like an implication, so that an 𝜑 can be removed and traded for a 𝜓.
(𝜑𝜓)    &    (~ 𝜓𝜒)        (𝜑𝜒)
 
Axiomax-init 7 The init rule. This innocent-looking rule looks similar to the Law of Excluded Middle in classical logic, but don't be fooled. This allows us to turn any deduction into its dual by simply performing operations on the ~ 𝜑 side and flipping it around to get the reverse implication. This is analogous to using modus tollens in classical logic, but it's especially useful in linear logic because it allows each operator to be defined as its dual with all of the deductions negated and backwards.
(~ 𝜑𝜑)
 
Axiomax-mdco 8 is commutative.
(~ (𝜑𝜓) ⅋ (𝜓𝜑))
 
Axiomax-mdas 9 is associative.
(~ ((𝜑𝜓) ⅋ 𝜒) ⅋ (𝜑 ⅋ (𝜓𝜒)))
 
Theoremcut1 10 Modus ponens like inference.
𝜑    &    (~ 𝜑𝜓)        𝜓
 
Theoremmdcod 11 is commutative. Deduction form of ax-mdco 8.
(𝜃 ⅋ (𝜑𝜓))        (𝜃 ⅋ (𝜓𝜑))
 
Theoremmdcoi 12 is commutative. Inference form of ax-mdco 8.
(𝜑𝜓)        (𝜓𝜑)
 
Theoremmdasd 13 is associative. Deduction form of ax-mdas 9.
(𝜃 ⅋ ((𝜑𝜓) ⅋ 𝜒))        (𝜃 ⅋ (𝜑 ⅋ (𝜓𝜒)))
 
Theoremmdasi 14 is associative. Inference form of ax-mdas 9.
((𝜑𝜓) ⅋ 𝜒)        (𝜑 ⅋ (𝜓𝜒))
 
Theoremmdasr 15 is associative. Reverse of ax-mdas 9.
(~ (𝜑 ⅋ (𝜓𝜒)) ⅋ ((𝜑𝜓) ⅋ 𝜒))
 
Theoremmdasrd 16 is associative. Deduction form of mdasr 15.
(𝜃 ⅋ (𝜑 ⅋ (𝜓𝜒)))        (𝜃 ⅋ ((𝜑𝜓) ⅋ 𝜒))
 
Theoremmdasri 17 is associative. Inference form of mdasrd 16.
(𝜑 ⅋ (𝜓𝜒))        ((𝜑𝜓) ⅋ 𝜒)
 
Theoremibotr 18 Add a , right hand side. See ax-ibot 4.
𝜑        (𝜑 ⅋ ⊥)
 
Theoremebotr 19 Remove a , right hand side. See ax-ebot 5.
(𝜑 ⅋ ⊥)        𝜑
 
Theoremnebot 20 Infer ~ ⊥ (secretly 1).
~ ⊥
 
Theoremcutneg 21 Negated version of ax-cut 6.
(𝜑 ⅋ ~ 𝜓)    &    (𝜓𝜒)        (𝜑𝜒)
 
Theoremcutf 22 Left-hand version of ax-cut 6.
(𝜓𝜑)    &    (~ 𝜓𝜒)        (𝜒𝜑)
 
Theoremdnid 23 Double negation introduction.
(𝜑𝜓)        (𝜑 ⅋ ~ ~ 𝜓)
 
Theoremdned 24 Double negation elimination.
(𝜑 ⅋ ~ ~ 𝜓)        (𝜑𝜓)
 
Theoremdni1 25 Double negation introduction, left hand side.
(𝜑𝜓)        (~ ~ 𝜑𝜓)
 
Theoremdne1 26 Double negation elimination, left hand side.
(~ ~ 𝜑𝜓)        (𝜑𝜓)
 
Theoreminenebot 27 Add a ~ ~ ⊥. See ax-ibot 4. This is useful for dealing with deductions where the antecedent is negated.
𝜑        (~ ~ ⊥ ⅋ 𝜑)
 
Theoremenenebot 28 Remove a ~ ~ ⊥. Inverse of inenebot 27.
(~ ~ ⊥ ⅋ 𝜑)        𝜑
 
1.1.2  Additives

There are two additive binary connectives: & and . These relate to treating the involved expressions independently. Here we characterize &, and df-ad 132 will define as its dual.

 
Syntaxwtop 29 Top, the unit of &. In the resource interpretation, this represents an unknown collection of objects. Characterized by ax-top 31.
wff
 
Syntaxwac 30 With, additive conjunction. In the resource interpretation, this represents a choice between two resources. Characterized by ax-iac 32, ax-eac1 33, ax-eac2 34.
wff (𝜑 & 𝜓)
 
Axiomax-top 31 Anything can turn into .
(~ 𝜑 ⅋ ⊤)
 
Axiomax-iac 32 & introduction rule.
(~ 𝜑𝜓)    &    (~ 𝜑𝜒)        (~ 𝜑 ⅋ (𝜓 & 𝜒))
 
Axiomax-eac1 33 & elimination rule, left hand side.
(~ 𝜑 ⅋ (𝜓 & 𝜒))        (~ 𝜑𝜓)
 
Axiomax-eac2 34 & elimination rule, right hand side.
(~ 𝜑 ⅋ (𝜓 & 𝜒))        (~ 𝜑𝜒)
 
Theoremiac 35 & introduction rule. ax-iac 32 has a negation for some reason, this one doesn't.
(𝜑𝜓)    &    (𝜑𝜒)        (𝜑 ⅋ (𝜓 & 𝜒))
 
Theoremiaci 36 & introduction rule. Inference form of ax-iac 32.
𝜑    &    𝜓        (𝜑 & 𝜓)
 
Theoremeac1d 37 & elimination rule, left hand side. ax-eac1 33 has a negation for some reason, this one doesn't.
(𝜑 ⅋ (𝜓 & 𝜒))        (𝜑𝜓)
 
Theoremeac1i 38 & elimination rule, left hand side. Inference form of ax-eac1 33.
(𝜑 & 𝜓)        𝜑
 
Theoremeac2d 39 & elimination rule, right hand side. ax-eac2 34 has a negation for some reason, this one doesn't.
(𝜑 ⅋ (𝜓 & 𝜒))        (𝜑𝜒)
 
Theoremeac2i 40 & elimination rule, right hand side. Inference form of ax-eac2 34.
(𝜑 & 𝜓)        𝜓
 
Theoremitopi 41 Insert Top into With. Inverse of etopi 42.
𝜑        (𝜑 & ⊤)
 
Theoremetopi 42 Remove Top from With. This is, of course, just a special case of ax-eac1 33.
(𝜑 & ⊤)        𝜑
 
Theoremacco 43 & is commutative.
(𝜑 ⅋ (𝜓 & 𝜒))        (𝜑 ⅋ (𝜒 & 𝜓))
 
Theoremacas 44 & is associative.
(𝜑 ⅋ ((𝜓 & 𝜒) & 𝜃))        (𝜑 ⅋ (𝜓 & (𝜒 & 𝜃)))
 
Theoremacasr 45 & is associative. Reverse of acas 44.
(𝜑 ⅋ (𝜓 & (𝜒 & 𝜃)))        (𝜑 ⅋ ((𝜓 & 𝜒) & 𝜃))
 
Theoremdismdac 46 distributes over &.
(𝜑 ⅋ (𝜓 ⅋ (𝜒 & 𝜃)))        (𝜑 ⅋ ((𝜓𝜒) & (𝜓𝜃)))
 
Theoremextmdac 47 extracts out of &. Converse of dismdac 46.
(𝜑 ⅋ ((𝜓𝜒) & (𝜓𝜃)))        (𝜑 ⅋ (𝜓 ⅋ (𝜒 & 𝜃)))
 
1.1.3  Exponentials

There are two exponential connectives: ? and !. These allow expressions to be duplicated and deleted. Here we characterize ?, and df-pe 149 will define ! as its dual.

 
Syntaxwne 48 "Why not", negative exponential. Characterized by ax-ipe 49, ax-epe 50, ax-weak 51, ax-contr 52, ax-pemc 53, ax-dig 54.
wff ? 𝜑
 
Axiomax-ipe 49 Add a ? (secretly a !). Inverse of ax-epe 50.
(~ 𝜑 ⅋ ? 𝜓)        (~ ? 𝜑 ⅋ ? 𝜓)
 
Axiomax-epe 50 Remove a ? (secretly a !). Inverse of ax-ipe 49.
(~ ? 𝜑 ⅋ ? 𝜓)        (~ 𝜑 ⅋ ? 𝜓)
 
Axiomax-weak 51 ? 𝜑 can be added into any statement.
(~ ⊥ ⅋ ? 𝜑)
 
Axiomax-contr 52 ? 𝜑 can be contracted.
(~ (? 𝜑 ⅋ ? 𝜑) ⅋ ? 𝜑)
 
Axiomax-pemc 53 ! 1. This is needed to let ax-ipe 49 and ax-epe 50 work on single items.
~ ? ⊥
 
Axiomax-dig 54 If all the elements of a multiplicative disjunction have ?, then ? can be removed from that disjunction.
(~ ? (? 𝜑 ⅋ ? 𝜓) ⅋ (? 𝜑 ⅋ ? 𝜓))
 
1.1.4  Implication

Yay, implication!

The linear implication operator 𝜑𝜓 reads as, "Given a 𝜑, I can exchange it for a 𝜓." This is closely related to the logical implication which can be interpreted as, "Given a proof of 𝜑, I can prove 𝜓." The important difference is that the linear implication and the antecedent are both consumed by this action. The linear biconditional can work either way; the choice is given to you by the & in its definition.

The linear biconditional is used to write all definitions, except itself (df-lb 56).

 
Syntaxwlb 55 Linear biconditional, defined by df-lb 56. This is the operator used for definitions, so its definition will be a little unusual...
wff (𝜑𝜓)
 
Definitiondf-lb 56 Definition of linear biconditional. Since the linear implication has not been defined, this is a mouthfull. The good news is, once the properties of the linear biconditional are proven, it will be much easier to express other definitions. See dflb 93 for a cleaner form of the definition.
((~ (𝜑𝜓) ⅋ ((~ 𝜑𝜓) & (~ 𝜓𝜑))) & (~ ((~ 𝜑𝜓) & (~ 𝜓𝜑)) ⅋ (𝜑𝜓)))
 
Theoremlb1d 57 Forward deduction using .
(𝜑𝜓)    &    (𝜓𝜒)        (𝜑𝜒)
 
Theoremlb2d 58 Reverse deduction using .
(𝜑𝜒)    &    (𝜓𝜒)        (𝜑𝜓)
 
Theoremlb1i 59 Forward inference using .
𝜑    &    (𝜑𝜓)        𝜓
 
Theoremlb2i 60 Reverse inference using .
𝜓    &    (𝜑𝜓)        𝜑
 
Syntaxwli 61 Linear implication, defined by df-li 62. Now that linear implication exists, we can finally put things in syllogism form from here on.
wff (𝜑𝜓)
 
Definitiondf-li 62 Definition of linear implication.
((𝜑𝜓) ⧟ (~ 𝜑𝜓))
 
Theoremdfli1 63 Convert from linear implication.
(𝜑 ⅋ (𝜓𝜒))        (𝜑 ⅋ (~ 𝜓𝜒))
 
Theoremdfli2 64 Convert to linear implication.
(𝜑 ⅋ (~ 𝜓𝜒))        (𝜑 ⅋ (𝜓𝜒))
 
Theoremdfli1i 65 Convert from linear implication. Inference for dfli1 63.
(𝜓𝜒)        (~ 𝜓𝜒)
 
Theoremdfli2i 66 Convert to linear implication. Inference for dfli2 64.
(~ 𝜓𝜒)        (𝜓𝜒)
 
Theoremlb1s 67 Forward syllogism using .
(𝜑𝜓)    &    (𝜓𝜒)        (𝜑𝜒)
 
Theoremlb2s 68 Reverse syllogism using .
(𝜑𝜒)    &    (𝜓𝜒)        (𝜑𝜓)
 
Theoremmdm2 69 Par is monotone in its second argument.
(𝜃 ⅋ (𝜑𝜓))    &    (𝜓𝜒)        (𝜃 ⅋ (𝜑𝜒))
 
Theoremmdm1 70 Par is monotone in its first argument.
(𝜃 ⅋ (𝜑𝜓))    &    (𝜑𝜒)        (𝜃 ⅋ (𝜒𝜓))
 
Theoremmdm1i 71 Par is monotone in its first argument. Inference form of mdm1 70.
(𝜑𝜓)    &    (𝜑𝜒)        (𝜒𝜓)
 
Theoremmdm2i 72 Par is monotone in its second argument. Inference form of mdm2 69. Essentially ax-cut 6 using linear implication.
(𝜑𝜓)    &    (𝜓𝜒)        (𝜑𝜒)
 
Theoremmdm1s 73 Par is monotone in its first argument. Syllogism form of mdm1 70.
(𝜑𝜒)        ((𝜑𝜓) ⊸ (𝜒𝜓))
 
Theoremmdm2s 74 Par is monotone in its second argument. Syllogism form of mdm2 69.
(𝜓𝜒)        ((𝜑𝜓) ⊸ (𝜑𝜒))
 
Theoremsyl 75 Syllogism using linear implication.
(𝜑𝜓)    &    (𝜓𝜒)        (𝜑𝜒)
 
Theoremlmp 76 Modus ponens like inference using linear implication.
𝜑    &    (𝜑𝜓)        𝜓
 
Theoremid 77 Identity rule for linear implication. Syllogism form of ax-init 7.
(𝜑𝜑)
 
Theoremdnis 78 Double negation introduction. Syllogism form of dnid 23.
(𝜑 ⊸ ~ ~ 𝜑)
 
Theoremdnes 79 Double negation elimination. Syllogism form of dned 24.
(~ ~ 𝜑𝜑)
 
Theoremacm1 80 With is monotone in its first argument.
(𝜃 ⅋ (𝜑 & 𝜓))    &    (𝜑𝜒)        (𝜃 ⅋ (𝜒 & 𝜓))
 
Theoremacm2 81 With is monotone in its second argument.
(𝜃 ⅋ (𝜑 & 𝜓))    &    (𝜓𝜒)        (𝜃 ⅋ (𝜑 & 𝜒))
 
Theoremacm1i 82 With is monotone in its first argument. Inference form of acm1 80.
(𝜑 & 𝜓)    &    (𝜑𝜒)        (𝜒 & 𝜓)
 
Theoremacm2i 83 With is monotone in its second argument. Inference form of acm2 81.
(𝜑 & 𝜓)    &    (𝜓𝜒)        (𝜑 & 𝜒)
 
Theoremacm1s 84 With is monotone in its first argument. Syllogism form of acm1 80.
(𝜑𝜒)        ((𝜑 & 𝜓) ⊸ (𝜒 & 𝜓))
 
Theoremacm2s 85 With is monotone in its second argument. Syllogism form of acm2 81.
(𝜓𝜒)        ((𝜑 & 𝜓) ⊸ (𝜑 & 𝜒))
 
Theoremnems 86 "Why not" is monotone.
(𝜑𝜓)        (? 𝜑 ⊸ ? 𝜓)
 
Theoremlbi1s 87 Extract forward implication from biconditional. Syllogism form of lb1i 59.
((𝜑𝜓) ⊸ (𝜑𝜓))
 
Theoremlbi2s 88 Extract reverse implication from biconditional. Syllogism form of lb2i 60.
((𝜑𝜓) ⊸ (𝜓𝜑))
 
Theoremlbi1 89 Extract forward implication from biconditional. Alternate form of lb1i 59.
(𝜑𝜓)        (𝜑𝜓)
 
Theoremlbi2 90 Extract reverse implication from biconditional. Alternate form of lb2i 60.
(𝜑𝜓)        (𝜓𝜑)
 
Theoremdflb1s 91 Forward implication of biconditional definition.
((𝜑𝜓) ⊸ ((𝜑𝜓) & (𝜓𝜑)))
 
Theoremdflb2s 92 Reverse implication of biconditional definition.
(((𝜑𝜓) & (𝜓𝜑)) ⊸ (𝜑𝜓))
 
Theoremdflb 93 Nicer definition of biconditional. Uses and .
((𝜑𝜓) ⧟ ((𝜑𝜓) & (𝜓𝜑)))
 
Theoremlicon 94 Contrapositive rule for linear implication. This follows quite neatly from df-li 62.
((𝜑𝜓) ⊸ (~ 𝜓 ⊸ ~ 𝜑))
 
Theoremlicond 95 Deduction form of licon 94.
(𝜒 ⅋ (𝜑𝜓))        (𝜒 ⅋ (~ 𝜓 ⊸ ~ 𝜑))
 
Theoremilb 96 Construct a biconditional from its forward and reverse implications.
(𝜑𝜓)    &    (𝜓𝜑)        (𝜑𝜓)
 
Theoremilbd 97 Construct a biconditional from its forward and reverse implications.
(𝜑 ⊸ (𝜓𝜒))    &    (𝜑 ⊸ (𝜒𝜓))        (𝜑 ⊸ (𝜓𝜒))
 
Theoremlbrf 98 Linear biconditional is reflexive. This could be thought of as "both directions" of id 77.
(𝜑𝜑)
 
Theoremlbeui 99 Linear biconditional is Euclidean. Inference for lbeu 126.
(𝜑𝜓)    &    (𝜑𝜒)        (𝜓𝜒)
 
Theoremlbsymi 100 Linear biconditional is symmetric. Inference for lbsym 127.
(𝜑𝜓)        (𝜓𝜑)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-335
  Copyright terms: Public domain < Previous  Next >