LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  lbsymi Structured version  

Theorem lbsymi 100
Description: Linear biconditional is symmetric. Inference for lbsym 127.
Hypothesis
Ref Expression
lbsymi.1 (𝜑𝜓)
Assertion
Ref Expression
lbsymi (𝜓𝜑)

Proof of Theorem lbsymi
StepHypRef Expression
1 lbsymi.1 . 2 (𝜑𝜓)
2 lbrf 98 . 2 (𝜑𝜑)
31, 2lbeui 99 1 (𝜓𝜑)
Colors of variables: wff var nilad
Syntax hints:  wlb 55
This theorem was proved from axioms:  ax-ibot 4  ax-ebot 5  ax-cut 6  ax-init 7  ax-mdco 8  ax-mdas 9  ax-iac 32  ax-eac1 33  ax-eac2 34
This theorem depends on definitions:  df-lb 56  df-li 62
This theorem is referenced by:  lbtri  101
  Copyright terms: Public domain W3C validator