Linear Logic Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > LLPE Home > Th. List > ax-mdco | Structured version |
Description: ⅋ is commutative. |
Ref | Expression |
---|---|
ax-mdco | ⊦ (~ (𝜑 ⅋ 𝜓) ⅋ (𝜓 ⅋ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . . 4 wff 𝜑 | |
2 | wps | . . . 4 wff 𝜓 | |
3 | 1, 2 | wmd 2 | . . 3 wff (𝜑 ⅋ 𝜓) |
4 | 3 | wneg 3 | . 2 wff ~ (𝜑 ⅋ 𝜓) |
5 | 2, 1 | wmd 2 | . 2 wff (𝜓 ⅋ 𝜑) |
6 | 4, 5 | wmd 2 | 1 wff (~ (𝜑 ⅋ 𝜓) ⅋ (𝜓 ⅋ 𝜑)) |
Colors of variables: wff var nilad |
This axiom is referenced by: mdcod 11 mdcoi 12 mdasr 15 mcco 115 |
Copyright terms: Public domain | W3C validator |