LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  mdcod Structured version  

Theorem mdcod 11
Description: is commutative. Deduction form of ax-mdco 8.
Hypothesis
Ref Expression
mdcod.1 (𝜃 ⅋ (𝜑𝜓))
Assertion
Ref Expression
mdcod (𝜃 ⅋ (𝜓𝜑))

Proof of Theorem mdcod
StepHypRef Expression
1 mdcod.1 . 2 (𝜃 ⅋ (𝜑𝜓))
2 ax-mdco 8 . 2 (~ (𝜑𝜓) ⅋ (𝜓𝜑))
31, 2ax-cut 6 1 (𝜃 ⅋ (𝜓𝜑))
Colors of variables: wff var nilad
Syntax hints:  wmd 2
This theorem was proved from axioms:  ax-cut 6  ax-mdco 8
This theorem is referenced by:  mdm1  70  licon  94  licond  95  mdco  108  md1  113
  Copyright terms: Public domain W3C validator