LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  licond Structured version  

Theorem licond 95
Description: Deduction form of licon 94.
Hypothesis
Ref Expression
licond.1 (𝜒 ⅋ (𝜑𝜓))
Assertion
Ref Expression
licond (𝜒 ⅋ (~ 𝜓 ⊸ ~ 𝜑))

Proof of Theorem licond
StepHypRef Expression
1 licond.1 . . . . . . 7 (𝜒 ⅋ (𝜑𝜓))
21dfli1 63 . . . . . 6 (𝜒 ⅋ (~ 𝜑𝜓))
32mdasri 17 . . . . 5 ((𝜒 ⅋ ~ 𝜑) ⅋ 𝜓)
43dnid 23 . . . 4 ((𝜒 ⅋ ~ 𝜑) ⅋ ~ ~ 𝜓)
54mdasi 14 . . 3 (𝜒 ⅋ (~ 𝜑 ⅋ ~ ~ 𝜓))
65mdcod 11 . 2 (𝜒 ⅋ (~ ~ 𝜓 ⅋ ~ 𝜑))
76dfli2 64 1 (𝜒 ⅋ (~ 𝜓 ⊸ ~ 𝜑))
Colors of variables: wff var nilad
Syntax hints:  wmd 2  ~ wneg 3  wli 61
This theorem was proved from axioms:  ax-ibot 4  ax-ebot 5  ax-cut 6  ax-init 7  ax-mdco 8  ax-mdas 9  ax-eac1 33  ax-eac2 34
This theorem depends on definitions:  df-lb 56  df-li 62
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator