Linear Logic Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > LLPE Home > Th. List > licond | Structured version |
Description: Deduction form of licon 94. |
Ref | Expression |
---|---|
licond.1 | ⊦ (𝜒 ⅋ (𝜑 ⊸ 𝜓)) |
Ref | Expression |
---|---|
licond | ⊦ (𝜒 ⅋ (~ 𝜓 ⊸ ~ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | licond.1 | . . . . . . 7 ⊦ (𝜒 ⅋ (𝜑 ⊸ 𝜓)) | |
2 | 1 | dfli1 63 | . . . . . 6 ⊦ (𝜒 ⅋ (~ 𝜑 ⅋ 𝜓)) |
3 | 2 | mdasri 17 | . . . . 5 ⊦ ((𝜒 ⅋ ~ 𝜑) ⅋ 𝜓) |
4 | 3 | dnid 23 | . . . 4 ⊦ ((𝜒 ⅋ ~ 𝜑) ⅋ ~ ~ 𝜓) |
5 | 4 | mdasi 14 | . . 3 ⊦ (𝜒 ⅋ (~ 𝜑 ⅋ ~ ~ 𝜓)) |
6 | 5 | mdcod 11 | . 2 ⊦ (𝜒 ⅋ (~ ~ 𝜓 ⅋ ~ 𝜑)) |
7 | 6 | dfli2 64 | 1 ⊦ (𝜒 ⅋ (~ 𝜓 ⊸ ~ 𝜑)) |
Colors of variables: wff var nilad |
Syntax hints: ⅋ wmd 2 ~ wneg 3 ⊸ wli 61 |
This theorem was proved from axioms: ax-ibot 4 ax-ebot 5 ax-cut 6 ax-init 7 ax-mdco 8 ax-mdas 9 ax-eac1 33 ax-eac2 34 |
This theorem depends on definitions: df-lb 56 df-li 62 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |