LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  mdasri Structured version  

Theorem mdasri 17
Description: is associative. Inference form of mdasrd 16.
Hypothesis
Ref Expression
mdasri.1 (𝜑 ⅋ (𝜓𝜒))
Assertion
Ref Expression
mdasri ((𝜑𝜓) ⅋ 𝜒)

Proof of Theorem mdasri
StepHypRef Expression
1 mdasri.1 . . . 4 (𝜑 ⅋ (𝜓𝜒))
21ax-ibot 4 . . 3 (⊥ ⅋ (𝜑 ⅋ (𝜓𝜒)))
32mdasrd 16 . 2 (⊥ ⅋ ((𝜑𝜓) ⅋ 𝜒))
43ax-ebot 5 1 ((𝜑𝜓) ⅋ 𝜒)
Colors of variables: wff var nilad
Syntax hints:  wbot 1  wmd 2
This theorem was proved from axioms:  ax-ibot 4  ax-ebot 5  ax-cut 6  ax-mdco 8  ax-mdas 9
This theorem is referenced by:  dismdac  46  extmdac  47  mdm2  69  licond  95  md1  113
  Copyright terms: Public domain W3C validator