Linear Logic Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > LLPE Home > Th. List > mdm2 | Structured version |
Description: Par is monotone in its second argument. |
Ref | Expression |
---|---|
mdm2.1 | ⊦ (𝜃 ⅋ (𝜑 ⅋ 𝜓)) |
mdm2.2 | ⊦ (𝜓 ⊸ 𝜒) |
Ref | Expression |
---|---|
mdm2 | ⊦ (𝜃 ⅋ (𝜑 ⅋ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdm2.1 | . . . 4 ⊦ (𝜃 ⅋ (𝜑 ⅋ 𝜓)) | |
2 | 1 | mdasri 17 | . . 3 ⊦ ((𝜃 ⅋ 𝜑) ⅋ 𝜓) |
3 | mdm2.2 | . . . 4 ⊦ (𝜓 ⊸ 𝜒) | |
4 | df-li 62 | . . . 4 ⊦ ((𝜓 ⊸ 𝜒) ⧟ (~ 𝜓 ⅋ 𝜒)) | |
5 | 3, 4 | lb1i 59 | . . 3 ⊦ (~ 𝜓 ⅋ 𝜒) |
6 | 2, 5 | ax-cut 6 | . 2 ⊦ ((𝜃 ⅋ 𝜑) ⅋ 𝜒) |
7 | 6 | mdasi 14 | 1 ⊦ (𝜃 ⅋ (𝜑 ⅋ 𝜒)) |
Colors of variables: wff var nilad |
Syntax hints: ⅋ wmd 2 ~ wneg 3 ⊸ wli 61 |
This theorem was proved from axioms: ax-ibot 4 ax-ebot 5 ax-cut 6 ax-init 7 ax-mdco 8 ax-mdas 9 ax-eac1 33 |
This theorem depends on definitions: df-lb 56 df-li 62 |
This theorem is referenced by: mdm1 70 mdm2i 72 mdm2s 74 |
Copyright terms: Public domain | W3C validator |