LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  mdm2 Structured version  

Theorem mdm2 69
Description: Par is monotone in its second argument.
Hypotheses
Ref Expression
mdm2.1 (𝜃 ⅋ (𝜑𝜓))
mdm2.2 (𝜓𝜒)
Assertion
Ref Expression
mdm2 (𝜃 ⅋ (𝜑𝜒))

Proof of Theorem mdm2
StepHypRef Expression
1 mdm2.1 . . . 4 (𝜃 ⅋ (𝜑𝜓))
21mdasri 17 . . 3 ((𝜃𝜑) ⅋ 𝜓)
3 mdm2.2 . . . 4 (𝜓𝜒)
4 df-li 62 . . . 4 ((𝜓𝜒) ⧟ (~ 𝜓𝜒))
53, 4lb1i 59 . . 3 (~ 𝜓𝜒)
62, 5ax-cut 6 . 2 ((𝜃𝜑) ⅋ 𝜒)
76mdasi 14 1 (𝜃 ⅋ (𝜑𝜒))
Colors of variables: wff var nilad
Syntax hints:  wmd 2  ~ wneg 3  wli 61
This theorem was proved from axioms:  ax-ibot 4  ax-ebot 5  ax-cut 6  ax-init 7  ax-mdco 8  ax-mdas 9  ax-eac1 33
This theorem depends on definitions:  df-lb 56  df-li 62
This theorem is referenced by:  mdm1  70  mdm2i  72  mdm2s  74
  Copyright terms: Public domain W3C validator