| Linear Logic Proof Explorer |
< Previous
Next >
Nearby theorems |
|
| Mirrors > Home > LLPE Home > Th. List > mdm2 | Structured version | |
| Description: Par is monotone in its second argument. |
| Ref | Expression |
|---|---|
| mdm2.1 | ⊦ (𝜃 ⅋ (𝜑 ⅋ 𝜓)) |
| mdm2.2 | ⊦ (𝜓 ⊸ 𝜒) |
| Ref | Expression |
|---|---|
| mdm2 | ⊦ (𝜃 ⅋ (𝜑 ⅋ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdm2.1 | . . . 4 ⊦ (𝜃 ⅋ (𝜑 ⅋ 𝜓)) | |
| 2 | 1 | mdasri 17 | . . 3 ⊦ ((𝜃 ⅋ 𝜑) ⅋ 𝜓) |
| 3 | mdm2.2 | . . . 4 ⊦ (𝜓 ⊸ 𝜒) | |
| 4 | df-li 62 | . . . 4 ⊦ ((𝜓 ⊸ 𝜒) ⧟ (~ 𝜓 ⅋ 𝜒)) | |
| 5 | 3, 4 | lb1i 59 | . . 3 ⊦ (~ 𝜓 ⅋ 𝜒) |
| 6 | 2, 5 | ax-cut 6 | . 2 ⊦ ((𝜃 ⅋ 𝜑) ⅋ 𝜒) |
| 7 | 6 | mdasi 14 | 1 ⊦ (𝜃 ⅋ (𝜑 ⅋ 𝜒)) |
| Colors of variables: wff var nilad |
| Syntax hints: ⅋ wmd 2 ~ wneg 3 ⊸ wli 61 |
| This theorem was proved from axioms: ax-ibot 4 ax-ebot 5 ax-cut 6 ax-init 7 ax-mdco 8 ax-mdas 9 ax-eac1 33 |
| This theorem depends on definitions: df-lb 56 df-li 62 |
| This theorem is referenced by: mdm1 70 mdm2i 72 mdm2s 74 |
| Copyright terms: Public domain | W3C validator |