LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  lb2s Structured version  

Theorem lb2s 68
Description: Reverse syllogism using .
Hypotheses
Ref Expression
lb2s.1 (𝜑𝜒)
lb2s.2 (𝜓𝜒)
Assertion
Ref Expression
lb2s (𝜑𝜓)

Proof of Theorem lb2s
StepHypRef Expression
1 lb2s.1 . . . 4 (𝜑𝜒)
21dfli1i 65 . . 3 (~ 𝜑𝜒)
3 lb2s.2 . . 3 (𝜓𝜒)
42, 3lb2d 58 . 2 (~ 𝜑𝜓)
54dfli2i 66 1 (𝜑𝜓)
Colors of variables: wff var nilad
Syntax hints:  ~ wneg 3  wlb 55  wli 61
This theorem was proved from axioms:  ax-ibot 4  ax-ebot 5  ax-cut 6  ax-init 7  ax-mdco 8  ax-eac1 33  ax-eac2 34
This theorem depends on definitions:  df-lb 56  df-li 62
This theorem is referenced by:  licon  94  md2  114  mcco  115  abs1  178
  Copyright terms: Public domain W3C validator