Linear Logic Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > LLPE Home > Th. List > dfli2i | Structured version |
Description: Convert to linear implication. Inference for dfli2 64. |
Ref | Expression |
---|---|
dfli2i.1 | ⊦ (~ 𝜓 ⅋ 𝜒) |
Ref | Expression |
---|---|
dfli2i | ⊦ (𝜓 ⊸ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfli2i.1 | . . . 4 ⊦ (~ 𝜓 ⅋ 𝜒) | |
2 | 1 | ax-ibot 4 | . . 3 ⊦ (⊥ ⅋ (~ 𝜓 ⅋ 𝜒)) |
3 | 2 | dfli2 64 | . 2 ⊦ (⊥ ⅋ (𝜓 ⊸ 𝜒)) |
4 | 3 | ax-ebot 5 | 1 ⊦ (𝜓 ⊸ 𝜒) |
Colors of variables: wff var nilad |
Syntax hints: ⊥wbot 1 ⅋ wmd 2 ~ wneg 3 ⊸ wli 61 |
This theorem was proved from axioms: ax-ibot 4 ax-ebot 5 ax-cut 6 ax-init 7 ax-mdco 8 ax-eac1 33 ax-eac2 34 |
This theorem depends on definitions: df-lb 56 df-li 62 |
This theorem is referenced by: lb1s 67 lb2s 68 mdm1s 73 mdm2s 74 acm1s 84 acm2s 85 nems 86 dflb1s 91 dflb2s 92 licon 94 ilbd 97 lbsymd 102 mdco 108 mdas 110 md1 113 mcco 115 abs1 178 |
Copyright terms: Public domain | W3C validator |