Linear Logic Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > LLPE Home > Th. List > nems | Structured version |
Description: "Why not" is monotone. |
Ref | Expression |
---|---|
nems.1 | ⊦ (𝜑 ⊸ 𝜓) |
Ref | Expression |
---|---|
nems | ⊦ (? 𝜑 ⊸ ? 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nems.1 | . . . . 5 ⊦ (𝜑 ⊸ 𝜓) | |
2 | 1 | dfli1i 65 | . . . 4 ⊦ (~ 𝜑 ⅋ 𝜓) |
3 | ax-init 7 | . . . . 5 ⊦ (~ ? 𝜓 ⅋ ? 𝜓) | |
4 | 3 | ax-epe 50 | . . . 4 ⊦ (~ 𝜓 ⅋ ? 𝜓) |
5 | 2, 4 | ax-cut 6 | . . 3 ⊦ (~ 𝜑 ⅋ ? 𝜓) |
6 | 5 | ax-ipe 49 | . 2 ⊦ (~ ? 𝜑 ⅋ ? 𝜓) |
7 | 6 | dfli2i 66 | 1 ⊦ (? 𝜑 ⊸ ? 𝜓) |
Colors of variables: wff var nilad |
Syntax hints: ~ wneg 3 ? wne 48 ⊸ wli 61 |
This theorem was proved from axioms: ax-ibot 4 ax-ebot 5 ax-cut 6 ax-init 7 ax-mdco 8 ax-eac1 33 ax-eac2 34 ax-ipe 49 ax-epe 50 |
This theorem depends on definitions: df-lb 56 df-li 62 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |