Linear Logic Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > LLPE Home > Th. List > df-lb | Structured version |
Description: Definition of linear biconditional. Since the linear implication has not been defined, this is a mouthfull. The good news is, once the properties of the linear biconditional are proven, it will be much easier to express other definitions. See dflb 93 for a cleaner form of the definition. |
Ref | Expression |
---|---|
df-lb | ⊦ ((~ (𝜑 ⧟ 𝜓) ⅋ ((~ 𝜑 ⅋ 𝜓) & (~ 𝜓 ⅋ 𝜑))) & (~ ((~ 𝜑 ⅋ 𝜓) & (~ 𝜓 ⅋ 𝜑)) ⅋ (𝜑 ⧟ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . . . 5 wff 𝜑 | |
2 | wps | . . . . 5 wff 𝜓 | |
3 | 1, 2 | wlb 55 | . . . 4 wff (𝜑 ⧟ 𝜓) |
4 | 3 | wneg 3 | . . 3 wff ~ (𝜑 ⧟ 𝜓) |
5 | 1 | wneg 3 | . . . . 5 wff ~ 𝜑 |
6 | 5, 2 | wmd 2 | . . . 4 wff (~ 𝜑 ⅋ 𝜓) |
7 | 2 | wneg 3 | . . . . 5 wff ~ 𝜓 |
8 | 7, 1 | wmd 2 | . . . 4 wff (~ 𝜓 ⅋ 𝜑) |
9 | 6, 8 | wac 30 | . . 3 wff ((~ 𝜑 ⅋ 𝜓) & (~ 𝜓 ⅋ 𝜑)) |
10 | 4, 9 | wmd 2 | . 2 wff (~ (𝜑 ⧟ 𝜓) ⅋ ((~ 𝜑 ⅋ 𝜓) & (~ 𝜓 ⅋ 𝜑))) |
11 | 9 | wneg 3 | . . 3 wff ~ ((~ 𝜑 ⅋ 𝜓) & (~ 𝜓 ⅋ 𝜑)) |
12 | 11, 3 | wmd 2 | . 2 wff (~ ((~ 𝜑 ⅋ 𝜓) & (~ 𝜓 ⅋ 𝜑)) ⅋ (𝜑 ⧟ 𝜓)) |
13 | 10, 12 | wac 30 | 1 wff ((~ (𝜑 ⧟ 𝜓) ⅋ ((~ 𝜑 ⅋ 𝜓) & (~ 𝜓 ⅋ 𝜑))) & (~ ((~ 𝜑 ⅋ 𝜓) & (~ 𝜓 ⅋ 𝜑)) ⅋ (𝜑 ⧟ 𝜓))) |
Colors of variables: wff var nilad |
This definition is referenced by: lb1d 57 lb2d 58 lbi1s 87 lbi2s 88 dflb2s 92 |
Copyright terms: Public domain | W3C validator |