| Linear Logic Proof Explorer |
< Previous
Next >
Nearby theorems |
|
| Mirrors > Home > LLPE Home > Th. List > df-lb | Structured version | |
| Description: Definition of linear biconditional. Since the linear implication has not been defined, this is a mouthfull. The good news is, once the properties of the linear biconditional are proven, it will be much easier to express other definitions. See dflb 93 for a cleaner form of the definition. |
| Ref | Expression |
|---|---|
| df-lb | ⊦ ((~ (𝜑 ⧟ 𝜓) ⅋ ((~ 𝜑 ⅋ 𝜓) & (~ 𝜓 ⅋ 𝜑))) & (~ ((~ 𝜑 ⅋ 𝜓) & (~ 𝜓 ⅋ 𝜑)) ⅋ (𝜑 ⧟ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . . . 5 wff 𝜑 | |
| 2 | wps | . . . . 5 wff 𝜓 | |
| 3 | 1, 2 | wlb 55 | . . . 4 wff (𝜑 ⧟ 𝜓) |
| 4 | 3 | wneg 3 | . . 3 wff ~ (𝜑 ⧟ 𝜓) |
| 5 | 1 | wneg 3 | . . . . 5 wff ~ 𝜑 |
| 6 | 5, 2 | wmd 2 | . . . 4 wff (~ 𝜑 ⅋ 𝜓) |
| 7 | 2 | wneg 3 | . . . . 5 wff ~ 𝜓 |
| 8 | 7, 1 | wmd 2 | . . . 4 wff (~ 𝜓 ⅋ 𝜑) |
| 9 | 6, 8 | wac 30 | . . 3 wff ((~ 𝜑 ⅋ 𝜓) & (~ 𝜓 ⅋ 𝜑)) |
| 10 | 4, 9 | wmd 2 | . 2 wff (~ (𝜑 ⧟ 𝜓) ⅋ ((~ 𝜑 ⅋ 𝜓) & (~ 𝜓 ⅋ 𝜑))) |
| 11 | 9 | wneg 3 | . . 3 wff ~ ((~ 𝜑 ⅋ 𝜓) & (~ 𝜓 ⅋ 𝜑)) |
| 12 | 11, 3 | wmd 2 | . 2 wff (~ ((~ 𝜑 ⅋ 𝜓) & (~ 𝜓 ⅋ 𝜑)) ⅋ (𝜑 ⧟ 𝜓)) |
| 13 | 10, 12 | wac 30 | 1 wff ((~ (𝜑 ⧟ 𝜓) ⅋ ((~ 𝜑 ⅋ 𝜓) & (~ 𝜓 ⅋ 𝜑))) & (~ ((~ 𝜑 ⅋ 𝜓) & (~ 𝜓 ⅋ 𝜑)) ⅋ (𝜑 ⧟ 𝜓))) |
| Colors of variables: wff var nilad |
| This definition is referenced by: lb1d 57 lb2d 58 lbi1s 87 lbi2s 88 dflb2s 92 |
| Copyright terms: Public domain | W3C validator |