LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  df-lb Structured version  

Definition df-lb 56
Description: Definition of linear biconditional. Since the linear implication has not been defined, this is a mouthfull. The good news is, once the properties of the linear biconditional are proven, it will be much easier to express other definitions. See dflb 93 for a cleaner form of the definition.
Assertion
Ref Expression
df-lb ((~ (𝜑𝜓) ⅋ ((~ 𝜑𝜓) & (~ 𝜓𝜑))) & (~ ((~ 𝜑𝜓) & (~ 𝜓𝜑)) ⅋ (𝜑𝜓)))

Detailed syntax breakdown of Definition df-lb
StepHypRef Expression
1 wph . . . . 5 wff 𝜑
2 wps . . . . 5 wff 𝜓
31, 2wlb 55 . . . 4 wff (𝜑𝜓)
43wneg 3 . . 3 wff ~ (𝜑𝜓)
51wneg 3 . . . . 5 wff ~ 𝜑
65, 2wmd 2 . . . 4 wff (~ 𝜑𝜓)
72wneg 3 . . . . 5 wff ~ 𝜓
87, 1wmd 2 . . . 4 wff (~ 𝜓𝜑)
96, 8wac 30 . . 3 wff ((~ 𝜑𝜓) & (~ 𝜓𝜑))
104, 9wmd 2 . 2 wff (~ (𝜑𝜓) ⅋ ((~ 𝜑𝜓) & (~ 𝜓𝜑)))
119wneg 3 . . 3 wff ~ ((~ 𝜑𝜓) & (~ 𝜓𝜑))
1211, 3wmd 2 . 2 wff (~ ((~ 𝜑𝜓) & (~ 𝜓𝜑)) ⅋ (𝜑𝜓))
1310, 12wac 30 1 wff ((~ (𝜑𝜓) ⅋ ((~ 𝜑𝜓) & (~ 𝜓𝜑))) & (~ ((~ 𝜑𝜓) & (~ 𝜓𝜑)) ⅋ (𝜑𝜓)))
Colors of variables: wff var nilad
This definition is referenced by:  lb1d  57  lb2d  58  lbi1s  87  lbi2s  88  dflb2s  92
  Copyright terms: Public domain W3C validator