| Linear Logic Proof Explorer |
< Previous
Next >
Nearby theorems |
|
| Mirrors > Home > LLPE Home > Th. List > lb2d | Structured version | |
| Description: Reverse deduction using ⧟. |
| Ref | Expression |
|---|---|
| lb2d.1 | ⊦ (𝜑 ⅋ 𝜒) |
| lb2d.2 | ⊦ (𝜓 ⧟ 𝜒) |
| Ref | Expression |
|---|---|
| lb2d | ⊦ (𝜑 ⅋ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lb2d.1 | . 2 ⊦ (𝜑 ⅋ 𝜒) | |
| 2 | lb2d.2 | . . . 4 ⊦ (𝜓 ⧟ 𝜒) | |
| 3 | df-lb 56 | . . . . 5 ⊦ ((~ (𝜓 ⧟ 𝜒) ⅋ ((~ 𝜓 ⅋ 𝜒) & (~ 𝜒 ⅋ 𝜓))) & (~ ((~ 𝜓 ⅋ 𝜒) & (~ 𝜒 ⅋ 𝜓)) ⅋ (𝜓 ⧟ 𝜒))) | |
| 4 | 3 | eac1i 38 | . . . 4 ⊦ (~ (𝜓 ⧟ 𝜒) ⅋ ((~ 𝜓 ⅋ 𝜒) & (~ 𝜒 ⅋ 𝜓))) |
| 5 | 2, 4 | cut1 10 | . . 3 ⊦ ((~ 𝜓 ⅋ 𝜒) & (~ 𝜒 ⅋ 𝜓)) |
| 6 | 5 | eac2i 40 | . 2 ⊦ (~ 𝜒 ⅋ 𝜓) |
| 7 | 1, 6 | ax-cut 6 | 1 ⊦ (𝜑 ⅋ 𝜓) |
| Colors of variables: wff var nilad |
| Syntax hints: ⅋ wmd 2 ~ wneg 3 & wac 30 ⧟ wlb 55 |
| This theorem was proved from axioms: ax-ibot 4 ax-ebot 5 ax-cut 6 ax-init 7 ax-mdco 8 ax-eac1 33 ax-eac2 34 |
| This theorem depends on definitions: df-lb 56 |
| This theorem is referenced by: lb2i 60 dfli2 64 lb2s 68 ilbd 97 |
| Copyright terms: Public domain | W3C validator |