Linear Logic Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > LLPE Home > Th. List > lb2d | Structured version |
Description: Reverse deduction using ⧟. |
Ref | Expression |
---|---|
lb2d.1 | ⊦ (𝜑 ⅋ 𝜒) |
lb2d.2 | ⊦ (𝜓 ⧟ 𝜒) |
Ref | Expression |
---|---|
lb2d | ⊦ (𝜑 ⅋ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lb2d.1 | . 2 ⊦ (𝜑 ⅋ 𝜒) | |
2 | lb2d.2 | . . . 4 ⊦ (𝜓 ⧟ 𝜒) | |
3 | df-lb 56 | . . . . 5 ⊦ ((~ (𝜓 ⧟ 𝜒) ⅋ ((~ 𝜓 ⅋ 𝜒) & (~ 𝜒 ⅋ 𝜓))) & (~ ((~ 𝜓 ⅋ 𝜒) & (~ 𝜒 ⅋ 𝜓)) ⅋ (𝜓 ⧟ 𝜒))) | |
4 | 3 | eac1i 38 | . . . 4 ⊦ (~ (𝜓 ⧟ 𝜒) ⅋ ((~ 𝜓 ⅋ 𝜒) & (~ 𝜒 ⅋ 𝜓))) |
5 | 2, 4 | cut1 10 | . . 3 ⊦ ((~ 𝜓 ⅋ 𝜒) & (~ 𝜒 ⅋ 𝜓)) |
6 | 5 | eac2i 40 | . 2 ⊦ (~ 𝜒 ⅋ 𝜓) |
7 | 1, 6 | ax-cut 6 | 1 ⊦ (𝜑 ⅋ 𝜓) |
Colors of variables: wff var nilad |
Syntax hints: ⅋ wmd 2 ~ wneg 3 & wac 30 ⧟ wlb 55 |
This theorem was proved from axioms: ax-ibot 4 ax-ebot 5 ax-cut 6 ax-init 7 ax-mdco 8 ax-eac1 33 ax-eac2 34 |
This theorem depends on definitions: df-lb 56 |
This theorem is referenced by: lb2i 60 dfli2 64 lb2s 68 ilbd 97 |
Copyright terms: Public domain | W3C validator |