LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  lb2i Structured version  

Theorem lb2i 60
Description: Reverse inference using .
Hypotheses
Ref Expression
lb2i.1 𝜓
lb2i.2 (𝜑𝜓)
Assertion
Ref Expression
lb2i 𝜑

Proof of Theorem lb2i
StepHypRef Expression
1 lb2i.1 . . . 4 𝜓
21ax-ibot 4 . . 3 (⊥ ⅋ 𝜓)
3 lb2i.2 . . 3 (𝜑𝜓)
42, 3lb2d 58 . 2 (⊥ ⅋ 𝜑)
54ax-ebot 5 1 𝜑
Colors of variables: wff var nilad
Syntax hints:  wbot 1  wlb 55
This theorem was proved from axioms:  ax-ibot 4  ax-ebot 5  ax-cut 6  ax-init 7  ax-mdco 8  ax-eac1 33  ax-eac2 34
This theorem depends on definitions:  df-lb 56
This theorem is referenced by:  syl  75  id  77  dnis  78  dnes  79  lbi1s  87  lbi2s  88  ilb  96  abs1  178
  Copyright terms: Public domain W3C validator