Linear Logic Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > LLPE Home > Th. List > syl | Structured version |
Description: Syllogism using linear implication. |
Ref | Expression |
---|---|
syl.1 | ⊦ (𝜑 ⊸ 𝜓) |
syl.2 | ⊦ (𝜓 ⊸ 𝜒) |
Ref | Expression |
---|---|
syl | ⊦ (𝜑 ⊸ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl.1 | . . . 4 ⊦ (𝜑 ⊸ 𝜓) | |
2 | df-li 62 | . . . 4 ⊦ ((𝜑 ⊸ 𝜓) ⧟ (~ 𝜑 ⅋ 𝜓)) | |
3 | 1, 2 | lb1i 59 | . . 3 ⊦ (~ 𝜑 ⅋ 𝜓) |
4 | syl.2 | . . . 4 ⊦ (𝜓 ⊸ 𝜒) | |
5 | df-li 62 | . . . 4 ⊦ ((𝜓 ⊸ 𝜒) ⧟ (~ 𝜓 ⅋ 𝜒)) | |
6 | 4, 5 | lb1i 59 | . . 3 ⊦ (~ 𝜓 ⅋ 𝜒) |
7 | 3, 6 | ax-cut 6 | . 2 ⊦ (~ 𝜑 ⅋ 𝜒) |
8 | df-li 62 | . 2 ⊦ ((𝜑 ⊸ 𝜒) ⧟ (~ 𝜑 ⅋ 𝜒)) | |
9 | 7, 8 | lb2i 60 | 1 ⊦ (𝜑 ⊸ 𝜒) |
Colors of variables: wff var nilad |
Syntax hints: ⅋ wmd 2 ~ wneg 3 ⊸ wli 61 |
This theorem was proved from axioms: ax-ibot 4 ax-ebot 5 ax-cut 6 ax-init 7 ax-mdco 8 ax-eac1 33 ax-eac2 34 |
This theorem depends on definitions: df-lb 56 df-li 62 |
This theorem is referenced by: dflb2s 92 licon 94 lbeui 99 md2 114 mcco 115 abs1 178 |
Copyright terms: Public domain | W3C validator |