Linear Logic Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > LLPE Home > Th. List > lmp | Structured version |
Description: Modus ponens like inference using linear implication. |
Ref | Expression |
---|---|
lmp.min | ⊦ 𝜑 |
lmp.maj | ⊦ (𝜑 ⊸ 𝜓) |
Ref | Expression |
---|---|
lmp | ⊦ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmp.min | . . . 4 ⊦ 𝜑 | |
2 | 1 | ax-ibot 4 | . . 3 ⊦ (⊥ ⅋ 𝜑) |
3 | lmp.maj | . . 3 ⊦ (𝜑 ⊸ 𝜓) | |
4 | 2, 3 | mdm2i 72 | . 2 ⊦ (⊥ ⅋ 𝜓) |
5 | 4 | ax-ebot 5 | 1 ⊦ 𝜓 |
Colors of variables: wff var nilad |
Syntax hints: ⊥wbot 1 ⊸ wli 61 |
This theorem was proved from axioms: ax-ibot 4 ax-ebot 5 ax-cut 6 ax-init 7 ax-mdco 8 ax-mdas 9 ax-eac1 33 |
This theorem depends on definitions: df-lb 56 df-li 62 |
This theorem is referenced by: lbi1 89 lbi2 90 dflb 93 mcco 115 |
Copyright terms: Public domain | W3C validator |