| Linear Logic Proof Explorer |
< Previous
Next >
Nearby theorems |
|
| Mirrors > Home > LLPE Home > Th. List > lmp | Structured version | |
| Description: Modus ponens like inference using linear implication. |
| Ref | Expression |
|---|---|
| lmp.min | ⊦ 𝜑 |
| lmp.maj | ⊦ (𝜑 ⊸ 𝜓) |
| Ref | Expression |
|---|---|
| lmp | ⊦ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmp.min | . . . 4 ⊦ 𝜑 | |
| 2 | 1 | ax-ibot 4 | . . 3 ⊦ (⊥ ⅋ 𝜑) |
| 3 | lmp.maj | . . 3 ⊦ (𝜑 ⊸ 𝜓) | |
| 4 | 2, 3 | mdm2i 72 | . 2 ⊦ (⊥ ⅋ 𝜓) |
| 5 | 4 | ax-ebot 5 | 1 ⊦ 𝜓 |
| Colors of variables: wff var nilad |
| Syntax hints: ⊥wbot 1 ⊸ wli 61 |
| This theorem was proved from axioms: ax-ibot 4 ax-ebot 5 ax-cut 6 ax-init 7 ax-mdco 8 ax-mdas 9 ax-eac1 33 |
| This theorem depends on definitions: df-lb 56 df-li 62 |
| This theorem is referenced by: lbi1 89 lbi2 90 dflb 93 mcco 115 |
| Copyright terms: Public domain | W3C validator |