LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  lbi2 Structured version  

Theorem lbi2 90
Description: Extract reverse implication from biconditional. Alternate form of lb2i 60.
Hypothesis
Ref Expression
lbi2.1 (𝜑𝜓)
Assertion
Ref Expression
lbi2 (𝜓𝜑)

Proof of Theorem lbi2
StepHypRef Expression
1 lbi2.1 . 2 (𝜑𝜓)
2 lbi2s 88 . 2 ((𝜑𝜓) ⊸ (𝜓𝜑))
31, 2lmp 76 1 (𝜓𝜑)
Colors of variables: wff var nilad
Syntax hints:  wlb 55  wli 61
This theorem was proved from axioms:  ax-ibot 4  ax-ebot 5  ax-cut 6  ax-init 7  ax-mdco 8  ax-mdas 9  ax-eac1 33  ax-eac2 34
This theorem depends on definitions:  df-lb 56  df-li 62
This theorem is referenced by:  lbeui  99  md2  114
  Copyright terms: Public domain W3C validator