| Linear Logic Proof Explorer |
< Previous
Next >
Nearby theorems |
|
| Mirrors > Home > LLPE Home > Th. List > md2 | Structured version | |
| Description: ⊥ is the unit of ⅋ (right side). |
| Ref | Expression |
|---|---|
| md2 | ⊦ (𝜑 ⧟ (𝜑 ⅋ ⊥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | md1 113 | . . . 4 ⊦ (𝜑 ⧟ (⊥ ⅋ 𝜑)) | |
| 2 | 1 | lbi1 89 | . . 3 ⊦ (𝜑 ⊸ (⊥ ⅋ 𝜑)) |
| 3 | mdcob 109 | . . . 4 ⊦ ((𝜑 ⅋ ⊥) ⧟ (⊥ ⅋ 𝜑)) | |
| 4 | 3 | lbi2 90 | . . 3 ⊦ ((⊥ ⅋ 𝜑) ⊸ (𝜑 ⅋ ⊥)) |
| 5 | 2, 4 | syl 75 | . 2 ⊦ (𝜑 ⊸ (𝜑 ⅋ ⊥)) |
| 6 | 3 | lbi1 89 | . . 3 ⊦ ((𝜑 ⅋ ⊥) ⊸ (⊥ ⅋ 𝜑)) |
| 7 | 6, 1 | lb2s 68 | . 2 ⊦ ((𝜑 ⅋ ⊥) ⊸ 𝜑) |
| 8 | 5, 7 | ilb 96 | 1 ⊦ (𝜑 ⧟ (𝜑 ⅋ ⊥)) |
| Colors of variables: wff var nilad |
| Syntax hints: ⊥wbot 1 ⅋ wmd 2 ⧟ wlb 55 |
| This theorem was proved from axioms: ax-ibot 4 ax-ebot 5 ax-cut 6 ax-init 7 ax-mdco 8 ax-mdas 9 ax-iac 32 ax-eac1 33 ax-eac2 34 |
| This theorem depends on definitions: df-lb 56 df-li 62 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |