LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  md2 Structured version  

Theorem md2 114
Description: is the unit of (right side).
Assertion
Ref Expression
md2 (𝜑 ⧟ (𝜑 ⅋ ⊥))

Proof of Theorem md2
StepHypRef Expression
1 md1 113 . . . 4 (𝜑 ⧟ (⊥ ⅋ 𝜑))
21lbi1 89 . . 3 (𝜑 ⊸ (⊥ ⅋ 𝜑))
3 mdcob 109 . . . 4 ((𝜑 ⅋ ⊥) ⧟ (⊥ ⅋ 𝜑))
43lbi2 90 . . 3 ((⊥ ⅋ 𝜑) ⊸ (𝜑 ⅋ ⊥))
52, 4syl 75 . 2 (𝜑 ⊸ (𝜑 ⅋ ⊥))
63lbi1 89 . . 3 ((𝜑 ⅋ ⊥) ⊸ (⊥ ⅋ 𝜑))
76, 1lb2s 68 . 2 ((𝜑 ⅋ ⊥) ⊸ 𝜑)
85, 7ilb 96 1 (𝜑 ⧟ (𝜑 ⅋ ⊥))
Colors of variables: wff var nilad
Syntax hints:  wbot 1  wmd 2  wlb 55
This theorem was proved from axioms:  ax-ibot 4  ax-ebot 5  ax-cut 6  ax-init 7  ax-mdco 8  ax-mdas 9  ax-iac 32  ax-eac1 33  ax-eac2 34
This theorem depends on definitions:  df-lb 56  df-li 62
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator