Home Linear Logic Proof Explorer
Theorem List (p. 2 of 4)
< Previous  Next >

Mirrors  >  Metamath Home Page  >  LLPE Home Page  >  Theorem List Contents       This page: Page List

Theorem List for Linear Logic Proof Explorer - 101-200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremlbtri 101 Linear biconditional is transitive. Inference for lbtr 128.
(𝜑𝜓)    &    (𝜓𝜒)        (𝜑𝜒)
 
Theoremlbsymd 102 Linear biconditional is symmetric. Deduction for lbsym 127.
(𝜑 ⊸ (𝜓𝜒))        (𝜑 ⊸ (𝜒𝜓))
 
1.1.5  Operator properties and duals

All operators in linear logic have a dual. The dual operator is the same as its corresponding operator but negated, similar to 𝜑𝜓 ↔ ¬ (¬ 𝜑 ∨ ¬ 𝜓) in classical logic. Here we will characterize the dual operators.

Also, now that we finally have the underpinnings for linear logic completely set up, we can finally establish the properties of the operators alongside their duals. This will make it much easier to do more interesting proofs.

 
1.1.5.1  Multiplicatives revisited
 
Syntaxwone 103 One, the unit of . Defined by df-one 104.
wff 1
 
Definitiondf-one 104 One is the dual of Bottom.
(1 ⧟ ~ ⊥)
 
Syntaxwmc 105 Times, multiplicative conjunction. Defined by df-mc 106.
wff (𝜑𝜓)
 
Definitiondf-mc 106 Times is the dual of Par.
((𝜑𝜓) ⧟ ~ (~ 𝜑 ⅋ ~ 𝜓))
 
Theoremdn 107 Double negation elimination and introduction.
(𝜑 ⧟ ~ ~ 𝜑)
 
Theoremmdco 108 is commutative.
((𝜑𝜓) ⊸ (𝜓𝜑))
 
Theoremmdcob 109 is commutative. Biconditional version of mdco 108.
((𝜑𝜓) ⧟ (𝜓𝜑))
 
Theoremmdas 110 is associative.
(((𝜑𝜓) ⅋ 𝜒) ⊸ (𝜑 ⅋ (𝜓𝜒)))
 
TheoremmdasrNEW 111 is associative. Reverse of mdas 110.
((𝜑 ⅋ (𝜓𝜒)) ⊸ ((𝜑𝜓) ⅋ 𝜒))
 
Theoremmdasb 112

(((𝜑𝜓) ⅋ 𝜒) ⧟ (𝜑 ⅋ (𝜓𝜒)))
 
Theoremmd1 113 is the unit of (left side).
(𝜑 ⧟ (⊥ ⅋ 𝜑))
 
Theoremmd2 114 is the unit of (right side).
(𝜑 ⧟ (𝜑 ⅋ ⊥))
 
Theoremmcco 115 is commutative. TODO extract double negation theorems, licon 94 alternate forms
((𝜑𝜓) ⊸ (𝜓𝜑))
 
Theoremmccob 116 is commutative. Biconditional version of mcco 115.
((𝜑𝜓) ⧟ (𝜓𝜑))
 
Theoremmcas 117 is associative.
(((𝜑𝜓) ⊗ 𝜒) ⊸ (𝜓 ⊗ (𝜓𝜒)))
 
Theoremmcasb 118 is associative.
(((𝜑𝜓) ⊗ 𝜒) ⧟ (𝜓 ⊗ (𝜓𝜒)))
 
Theoremmc1 119 1 is the unit of (left side).
(𝜑 ⧟ (1 ⊗ 𝜑))
 
Theoremmc2 120 1 is the unit of (right side).
(𝜑 ⧟ (𝜑 ⊗ 1))
 
Theoremone 121 1. It's very true, but is it as true as (itop 146, top 147)? Discuss.
1
 
Theoreminit 122 Creation of 𝜑 and its dual from 1. Dual of initr 123.
(1 ⊸ (𝜑 ⅋ ~ 𝜑))
 
Theoreminitr 123 Annihilation of 𝜑 and its dual into . Dual of init 122.
((𝜑 ⊗ ~ 𝜑) ⊸ ⊥)
 
Theoremmcmd 124 Association of into . The converse of this rule does not hold.

This theorem is its own dual: By flipping the around and swapping and , you end up with the same theorem.

((𝜑 ⊗ (𝜓𝜒)) ⊸ ((𝜑𝜓) ⅋ 𝜒))
 
Theoremmerge 125 Combine statements by a single term.
(((𝜑𝜓) ⊗ (𝜒𝜃)) ⊸ ((𝜑 ⅋ (𝜓𝜒)) ⅋ 𝜃))
 
Theoremlbeu 126 Linear biconditional is Euclidean.
(((𝜑𝜓) ⊗ (𝜑𝜒)) ⊸ (𝜓𝜒))
 
Theoremlbsym 127 Linear biconditional is symmetric.
((𝜑𝜓) ⊸ (𝜓𝜑))
 
Theoremlbtr 128 Linear biconditional is transitive.
(((𝜑𝜓) ⊗ (𝜓𝜒)) ⊸ (𝜑𝜒))
 
1.1.5.2  Additives revisited
 
Syntaxwzero 129 Zero, the unit of . Defined by df-zero 130.
wff 0
 
Definitiondf-zero 130 Zero is the dual of Top.
(0 ⧟ ~ ⊤)
 
Syntaxwad 131 Plus, additive disjunction. Defined by df-ad 132.
wff (𝜑𝜓)
 
Definitiondf-ad 132 Plus is the dual of With.
((𝜑𝜓) ⧟ ~ (~ 𝜑 & ~ 𝜓))
 
Theoremadcob 133 is commutative.
((𝜑𝜓) ⧟ (𝜓𝜑))
 
Theoremadasb 134 is associative.
(((𝜑𝜓) ⊕ 𝜒) ⧟ (𝜓 ⊕ (𝜓𝜒)))
 
Theoremad1 135 0 is the unit of (left side).
(𝜑 ⧟ (0 ⊕ 𝜑))
 
Theoremad2 136 0 is the unit of (right side).
(𝜑 ⧟ (𝜑 ⊕ 0))
 
Theoremaccob 137 & is commutative.
((𝜑 & 𝜓) ⧟ (𝜓 & 𝜑))
 
Theoremacasb 138 & is associative.
(((𝜑 & 𝜓) & 𝜒) ⧟ (𝜓 & (𝜓 & 𝜒)))
 
Theoremac1 139 is the unit of & (left side).
(𝜑 ⧟ (⊤ & 𝜑))
 
Theoremac2 140 is the unit of & (right side).
(𝜑 ⧟ (𝜑 & ⊤))
 
Theoremeac1 141 Select the left side of &. Dual of iad1 143.
((𝜑 & 𝜓) ⊸ 𝜑)
 
Theoremeac2 142 Select the left side of &. Dual of iad2 144.
((𝜑 & 𝜓) ⊸ 𝜓)
 
Theoremiad1 143 Introduce a (left side). Dual of eac1 141.
(𝜑 ⊸ (𝜑𝜓))
 
Theoremiad2 144 Introduce a (right side). Dual of eac2 142.
(𝜓 ⊸ (𝜑𝜓))
 
Theoremezer 145 From 0, infer all.
(0 ⊸ 𝜑)
 
Theoremitop 146 Everything can be turned into .
(𝜑 ⊸ ⊤)
 
Theoremtop 147 Hey, that's . A direct consequence of itop 146.
 
1.1.5.3  Exponentials revisited
 
Syntaxwpe 148 "Of course", positive exponential. Defined by df-pe 149.
wff ! 𝜑
 
Definitiondf-pe 149 "Of course" is the dual of "Why not".
(! 𝜑 ⧟ ~ ? ~ 𝜑)
 
Theoremweak 150 Create ? 𝜑 from .
(⊥ ⊸ ? 𝜑)
 
Theoremdupr 151 Unduplicate ? 𝜑.
((? 𝜑 ⊗ ? 𝜑) ⊸ ? 𝜑)
 
Theoremdig 152 Dig out a ? from .
(? (? 𝜑 ⊗ ? 𝜑) ⊸ (? 𝜑 ⊗ ? 𝜑))
 
Theoremdig1 153 Dig out a ? from a single term.
(? ? 𝜑 ⊸ ? 𝜑)
 
Theoremine 154 Promote 𝜑 to ? 𝜑.
(𝜑 ⊸ ? 𝜑)
 
Theoremweakr 155 Destroy ! 𝜑.
(! 𝜑 ⊸ 1)
 
Theoremdup 156 Duplicate ! 𝜑.
(! 𝜑 ⊸ (! 𝜑 ⊗ ! 𝜑))
 
Theorembury 157 Bury with !.
((! 𝜑 ⊗ ! 𝜑) ⊸ ! (! 𝜑 ⊗ ! 𝜑))
 
Theorembury1 158 Bury a single term with !.
(! 𝜑 ⊸ ! ! 𝜑)
 
Theoremepe 159 Demote ! 𝜑 to 𝜑.
(! 𝜑𝜑)
 
Theorempeone 160 ! 1. It's like 1 but even more.
! 1
 
Theorempetop 161 ! ⊤. It's like but even more.
! ⊤
 
Theoremipe 162 Introduce positive exponential at the top level. TODO: Extract lemmas for double negation, intro ? 𝜑, and more. Also get the proof back because it exploded
𝜑        ! 𝜑
 
1.1.6  Miscellaneous theorems

Here are some old uncategorized theorems. They need to be placed into an appropriate section and renamed.

 
Theoremionei 163 Insert One into Times.
𝜑        (𝜑 ⊗ 1)
 
Theoremeonei 164 Remove One from Times.
(𝜑 ⊗ 1)        𝜑
 
Theoremmcasd 165 Times is associative.
(𝜑 ⅋ ((𝜓𝜒) ⊗ 𝜃))        (𝜑 ⅋ (𝜓 ⊗ (𝜒𝜃)))
 
Theoremmcasrd 166 Times is associative.
(𝜑 ⅋ (𝜓 ⊗ (𝜒𝜃)))        (𝜑 ⅋ ((𝜓𝜒) ⊗ 𝜃))
 
Theoremmccod 167 Times is commutative.
(𝜑 ⅋ (𝜓𝜒))        (𝜑 ⅋ (𝜒𝜓))
 
Theoremmcm1s 168 Times is monotone in its first argument.
(𝜑𝜒)        ((𝜑𝜓) ⊸ (𝜒𝜓))
 
Theoremmcm2s 169 Times is monotone in its second argument.
(𝜓𝜒)        ((𝜑𝜓) ⊸ (𝜑𝜒))
 
TheoremizerOLD 170 Insert Zero into Plus.
𝜑        (𝜑 ⊕ 0)
 
TheoremezerOLD 171 Remove Zero from Plus.
(𝜑 ⊕ 0)        𝜑
 
Theoremadas 172 Plus is associative.
(𝜑 ⅋ ((𝜓𝜒) ⊕ 𝜃))        (𝜑 ⅋ (𝜓 ⊕ (𝜒𝜃)))
 
Theoremadasr 173 Plus is associative.
(𝜑 ⅋ (𝜓 ⊕ (𝜒𝜃)))        (𝜑 ⅋ ((𝜓𝜒) ⊕ 𝜃))
 
Theoremadco 174 Plus is commutative.
(𝜑 ⅋ (𝜓𝜒))        (𝜑 ⅋ (𝜒𝜓))
 
Theoremadm1s 175 Plus is monotone in its first argument.
(𝜑𝜒)        ((𝜑𝜓) ⊸ (𝜒𝜓))
 
Theoremadm2s 176 Plus is monotone in its second argument.
(𝜓𝜒)        ((𝜑𝜓) ⊸ (𝜑𝜒))
 
Theorempems 177 "Of Course" is monotone.
(𝜑𝜓)        (! 𝜑 ⊸ ! 𝜓)
 
Theoremabs1 178 Absorption of Plus into With. Together with abs2 179, this shows the additive operators form a lattice.
((𝜑 ⊕ (𝜑 & 𝜓)) ⧟ 𝜑)
 
Theoremabs2 179 Absorption into Plus. Together with abs1 178, this shows the additive operators form a lattice.
((𝜑 & (𝜑𝜓)) ⧟ 𝜑)
 
1.2  Intuitionistic logic

There exists a nice conversion between statements in intuitionistic logic to statements in linear logic. Basically, just throw a bunch of ! exponentials everywhere and you're good to go. Classical logic can then be recovered using the magic of double negatives.

This conversion relies on the fact that all statements on the "top level", meaning all axioms, proofs, and hypotheses, have an implicit ! as shown by ax-ipe 49. The rules of classical and intuitionistic logic dictate that all expressions can be duplicated in this manner, which is accomplished by filling the subexpressions with lots of !.

In this section, all of the axioms of intuitionistic logic used in the Metamath iset.mm database are proven. This means that linear logic could feasibly be used as a background logic for set theory. I wonder what interesting consequences would come from this?

 
Syntaxwim 180 Logical implication. Defined by df-im 181.
wff (𝜑𝜓)
 
Definitiondf-im 181 Definition of . It's but with some ! splashed in for good measure. Note that only 𝜑 needs the exponential. When this statement is beneath a ! or at the top level, this is equivalent to both sides having the exponential, because of
((𝜑𝜓) ⧟ (! 𝜑𝜓))
 
Syntaxwand 182 Logical conjunction. Defined by df-and 183.
wff (𝜑𝜓)
 
Definitiondf-and 183 Definition of . It's & but with some ! splashed in for good measure.
((𝜑𝜓) ⧟ (! 𝜑 & ! 𝜓))
 
Syntaxwor 184 Logical disjunction. Defined by df-or 185.
wff (𝜑𝜓)
 
Definitiondf-or 185 Definition of . It's but with some ! splashed in for good measure.
((𝜑𝜓) ⧟ (! 𝜑 ⊕ ! 𝜓))
 
Syntaxwnot 186 Logical negation. Defined by df-not 187.
wff ¬ 𝜑
 
Definitiondf-not 187 Definition of ¬. It's ~ but with some ! splashed in for good measure.
𝜑 ⧟ ~ ! 𝜑)
 
Syntaxwbi 188 Logical biconditional. Defined by df-bi 189.
wff (𝜑𝜓)
 
Definitiondf-bi 189 Definition of , in terms of the other logical connectives.
((𝜑𝜓) ⧟ ((𝜑𝜓) ∧ (𝜓𝜑)))
 
Theoremsimp 190 Principle of simplification. Allows discarding an unneeded antecedent. This is not possible with linear implication, since such a move would be non-linear; the ! exponentials in the definition of the logical implication operator allow 𝜓 to be discarded. Axiom 1 in the Metamath iset.mm database.
(𝜑 → (𝜓𝜑))
 
Theoremfrege 191 Axiom 2 in the Metamath iset.mm database. This uses the other property of the positive exponential, which is that it can be duplicated.
((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒)))
 
Theoremmp 192 Good ol' classic modus ponendo ponens. Doesn't it feel weird to have this be a theorem rather than an axiom?
𝜑    &    (𝜑𝜓)        𝜓
 
Theoremea1 193 Left 'and' elimination. Axiom ia1 in iset.mm.
((𝜑𝜓) → 𝜑)
 
Theoremea2 194 Right 'and' elimination. Axiom ia2 in iset.mm.
((𝜑𝜓) → 𝜓)
 
Theoremia 195 'And' introduction. Axiom ia3 in iset.mm.
(𝜑 → (𝜓 → (𝜑𝜓)))
 
Theoremor 196 'Or' elimination, and its converse. Axiom io in iset.mm.
(((𝜑𝜓) → 𝜒) ↔ ((𝜑𝜒) ∧ (𝜓𝜒)))
 
Theoreminot 197 'Not' introduction. Axiom in1 in iset.mm.
((𝜑 → ¬ 𝜑) → ¬ 𝜑)
 
Theoremenot 198 'Not' elimination. Axiom in2 in iset.mm.
𝜑 → (𝜑𝜓))
 
Theoremsimpi 199 Inference using simplification. Adds an unneeded antecedent. Inference for simp 190.
𝜑        (𝜓𝜑)
 
Theoremfregei 200 Inference using transposition. Inference for frege 191.
(𝜑 → (𝜓𝜒))        ((𝜑𝜓) → (𝜑𝜒))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100101-200 3 201-300 4 301-335
  Copyright terms: Public domain < Previous  Next >