LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  abs1 Structured version  

Theorem abs1 178
Description: Absorption of Plus into With. Together with abs2 179, this shows the additive operators form a lattice.
Assertion
Ref Expression
abs1 ((𝜑 ⊕ (𝜑 & 𝜓)) ⧟ 𝜑)

Proof of Theorem abs1
StepHypRef Expression
1 df-ad 132 . . . . 5 ((𝜑 ⊕ (𝜑 & 𝜓)) ⧟ ~ (~ 𝜑 & ~ (𝜑 & 𝜓)))
21lbi1 89 . . . 4 ((𝜑 ⊕ (𝜑 & 𝜓)) ⊸ ~ (~ 𝜑 & ~ (𝜑 & 𝜓)))
3 ax-init 7 . . . . . . . . 9 (~ ~ 𝜑 ⅋ ~ 𝜑)
4 ax-init 7 . . . . . . . . . . . 12 (~ (𝜑 & 𝜓) ⅋ (𝜑 & 𝜓))
54ax-eac1 33 . . . . . . . . . . 11 (~ (𝜑 & 𝜓) ⅋ 𝜑)
65dnid 23 . . . . . . . . . 10 (~ (𝜑 & 𝜓) ⅋ ~ ~ 𝜑)
76mdcoi 12 . . . . . . . . 9 (~ ~ 𝜑 ⅋ ~ (𝜑 & 𝜓))
83, 7ax-iac 32 . . . . . . . 8 (~ ~ 𝜑 ⅋ (~ 𝜑 & ~ (𝜑 & 𝜓)))
98dnid 23 . . . . . . 7 (~ ~ 𝜑 ⅋ ~ ~ (~ 𝜑 & ~ (𝜑 & 𝜓)))
109mdcoi 12 . . . . . 6 (~ ~ (~ 𝜑 & ~ (𝜑 & 𝜓)) ⅋ ~ ~ 𝜑)
1110dned 24 . . . . 5 (~ ~ (~ 𝜑 & ~ (𝜑 & 𝜓)) ⅋ 𝜑)
1211dfli2i 66 . . . 4 (~ (~ 𝜑 & ~ (𝜑 & 𝜓)) ⊸ 𝜑)
132, 12syl 75 . . 3 ((𝜑 ⊕ (𝜑 & 𝜓)) ⊸ 𝜑)
14 ax-init 7 . . . . . . 7 (~ (~ 𝜑 & ~ (𝜑 & 𝜓)) ⅋ (~ 𝜑 & ~ (𝜑 & 𝜓)))
1514eac1d 37 . . . . . 6 (~ (~ 𝜑 & ~ (𝜑 & 𝜓)) ⅋ ~ 𝜑)
1615mdcoi 12 . . . . 5 (~ 𝜑 ⅋ ~ (~ 𝜑 & ~ (𝜑 & 𝜓)))
1716dfli2i 66 . . . 4 (𝜑 ⊸ ~ (~ 𝜑 & ~ (𝜑 & 𝜓)))
1817, 1lb2s 68 . . 3 (𝜑 ⊸ (𝜑 ⊕ (𝜑 & 𝜓)))
1913, 18iaci 36 . 2 (((𝜑 ⊕ (𝜑 & 𝜓)) ⊸ 𝜑) & (𝜑 ⊸ (𝜑 ⊕ (𝜑 & 𝜓))))
20 dflb 93 . 2 (((𝜑 ⊕ (𝜑 & 𝜓)) ⧟ 𝜑) ⧟ (((𝜑 ⊕ (𝜑 & 𝜓)) ⊸ 𝜑) & (𝜑 ⊸ (𝜑 ⊕ (𝜑 & 𝜓)))))
2119, 20lb2i 60 1 ((𝜑 ⊕ (𝜑 & 𝜓)) ⧟ 𝜑)
Colors of variables: wff var nilad
Syntax hints:  ~ wneg 3   & wac 30  wlb 55  wli 61  wad 131
This theorem was proved from axioms:  ax-ibot 4  ax-ebot 5  ax-cut 6  ax-init 7  ax-mdco 8  ax-mdas 9  ax-iac 32  ax-eac1 33  ax-eac2 34
This theorem depends on definitions:  df-lb 56  df-li 62  df-ad 132
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator