Linear Logic Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > LLPE Home > Th. List > dnid | Structured version |
Description: Double negation introduction. |
Ref | Expression |
---|---|
dnid.1 | ⊦ (𝜑 ⅋ 𝜓) |
Ref | Expression |
---|---|
dnid | ⊦ (𝜑 ⅋ ~ ~ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dnid.1 | . 2 ⊦ (𝜑 ⅋ 𝜓) | |
2 | ax-init 7 | . . 3 ⊦ (~ ~ 𝜓 ⅋ ~ 𝜓) | |
3 | 2 | mdcoi 12 | . 2 ⊦ (~ 𝜓 ⅋ ~ ~ 𝜓) |
4 | 1, 3 | ax-cut 6 | 1 ⊦ (𝜑 ⅋ ~ ~ 𝜓) |
Colors of variables: wff var nilad |
Syntax hints: ⅋ wmd 2 ~ wneg 3 |
This theorem was proved from axioms: ax-ibot 4 ax-ebot 5 ax-cut 6 ax-init 7 ax-mdco 8 |
This theorem is referenced by: dned 24 dni1 25 licond 95 abs1 178 |
Copyright terms: Public domain | W3C validator |