LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  dnid Structured version  

Theorem dnid 23
Description: Double negation introduction.
Hypothesis
Ref Expression
dnid.1 (𝜑𝜓)
Assertion
Ref Expression
dnid (𝜑 ⅋ ~ ~ 𝜓)

Proof of Theorem dnid
StepHypRef Expression
1 dnid.1 . 2 (𝜑𝜓)
2 ax-init 7 . . 3 (~ ~ 𝜓 ⅋ ~ 𝜓)
32mdcoi 12 . 2 (~ 𝜓 ⅋ ~ ~ 𝜓)
41, 3ax-cut 6 1 (𝜑 ⅋ ~ ~ 𝜓)
Colors of variables: wff var nilad
Syntax hints:  wmd 2  ~ wneg 3
This theorem was proved from axioms:  ax-ibot 4  ax-ebot 5  ax-cut 6  ax-init 7  ax-mdco 8
This theorem is referenced by:  dned  24  dni1  25  licond  95  abs1  178
  Copyright terms: Public domain W3C validator