Linear Logic Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > LLPE Home > Th. List > mdcoi | Structured version |
Description: ⅋ is commutative. Inference form of ax-mdco 8. |
Ref | Expression |
---|---|
mdcoi.1 | ⊦ (𝜑 ⅋ 𝜓) |
Ref | Expression |
---|---|
mdcoi | ⊦ (𝜓 ⅋ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdcoi.1 | . 2 ⊦ (𝜑 ⅋ 𝜓) | |
2 | ax-mdco 8 | . 2 ⊦ (~ (𝜑 ⅋ 𝜓) ⅋ (𝜓 ⅋ 𝜑)) | |
3 | 1, 2 | cut1 10 | 1 ⊦ (𝜓 ⅋ 𝜑) |
Colors of variables: wff var nilad |
Syntax hints: ⅋ wmd 2 |
This theorem was proved from axioms: ax-ibot 4 ax-ebot 5 ax-cut 6 ax-mdco 8 |
This theorem is referenced by: ibotr 18 ebotr 19 cutneg 21 cutf 22 dnid 23 dned 24 dni1 25 dne1 26 dnis 78 dnes 79 md1 113 abs1 178 |
Copyright terms: Public domain | W3C validator |