Linear Logic Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > LLPE Home > Th. List > dnis | Structured version |
Description: Double negation introduction. Syllogism form of dnid 23. |
Ref | Expression |
---|---|
dnis | ⊦ (𝜑 ⊸ ~ ~ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-init 7 | . . 3 ⊦ (~ ~ 𝜑 ⅋ ~ 𝜑) | |
2 | 1 | mdcoi 12 | . 2 ⊦ (~ 𝜑 ⅋ ~ ~ 𝜑) |
3 | df-li 62 | . 2 ⊦ ((𝜑 ⊸ ~ ~ 𝜑) ⧟ (~ 𝜑 ⅋ ~ ~ 𝜑)) | |
4 | 2, 3 | lb2i 60 | 1 ⊦ (𝜑 ⊸ ~ ~ 𝜑) |
Colors of variables: wff var nilad |
Syntax hints: ⅋ wmd 2 ~ wneg 3 ⊸ wli 61 |
This theorem was proved from axioms: ax-ibot 4 ax-ebot 5 ax-cut 6 ax-init 7 ax-mdco 8 ax-eac1 33 ax-eac2 34 |
This theorem depends on definitions: df-lb 56 df-li 62 |
This theorem is referenced by: licon 94 dn 107 mcco 115 |
Copyright terms: Public domain | W3C validator |