LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  dnis Structured version  

Theorem dnis 78
Description: Double negation introduction. Syllogism form of dnid 23.
Assertion
Ref Expression
dnis (𝜑 ⊸ ~ ~ 𝜑)

Proof of Theorem dnis
StepHypRef Expression
1 ax-init 7 . . 3 (~ ~ 𝜑 ⅋ ~ 𝜑)
21mdcoi 12 . 2 (~ 𝜑 ⅋ ~ ~ 𝜑)
3 df-li 62 . 2 ((𝜑 ⊸ ~ ~ 𝜑) ⧟ (~ 𝜑 ⅋ ~ ~ 𝜑))
42, 3lb2i 60 1 (𝜑 ⊸ ~ ~ 𝜑)
Colors of variables: wff var nilad
Syntax hints:  wmd 2  ~ wneg 3  wli 61
This theorem was proved from axioms:  ax-ibot 4  ax-ebot 5  ax-cut 6  ax-init 7  ax-mdco 8  ax-eac1 33  ax-eac2 34
This theorem depends on definitions:  df-lb 56  df-li 62
This theorem is referenced by:  licon  94  dn  107  mcco  115
  Copyright terms: Public domain W3C validator