LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  iaci Structured version  

Theorem iaci 36
Description: & introduction rule. Inference form of ax-iac 32.
Hypotheses
Ref Expression
iaci.1 𝜑
iaci.2 𝜓
Assertion
Ref Expression
iaci (𝜑 & 𝜓)

Proof of Theorem iaci
StepHypRef Expression
1 iaci.1 . . . 4 𝜑
21ax-ibot 4 . . 3 (⊥ ⅋ 𝜑)
3 iaci.2 . . . 4 𝜓
43ax-ibot 4 . . 3 (⊥ ⅋ 𝜓)
52, 4iac 35 . 2 (⊥ ⅋ (𝜑 & 𝜓))
65ax-ebot 5 1 (𝜑 & 𝜓)
Colors of variables: wff var nilad
Syntax hints:  wbot 1   & wac 30
This theorem was proved from axioms:  ax-ibot 4  ax-ebot 5  ax-cut 6  ax-init 7  ax-mdco 8  ax-iac 32
This theorem is referenced by:  dflb  93  ilb  96  abs1  178
  Copyright terms: Public domain W3C validator