Linear Logic Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > LLPE Home > Th. List > ilb | Structured version |
Description: Construct a biconditional from its forward and reverse implications. |
Ref | Expression |
---|---|
ilb.1 | ⊦ (𝜑 ⊸ 𝜓) |
ilb.2 | ⊦ (𝜓 ⊸ 𝜑) |
Ref | Expression |
---|---|
ilb | ⊦ (𝜑 ⧟ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ilb.1 | . . 3 ⊦ (𝜑 ⊸ 𝜓) | |
2 | ilb.2 | . . 3 ⊦ (𝜓 ⊸ 𝜑) | |
3 | 1, 2 | iaci 36 | . 2 ⊦ ((𝜑 ⊸ 𝜓) & (𝜓 ⊸ 𝜑)) |
4 | dflb 93 | . 2 ⊦ ((𝜑 ⧟ 𝜓) ⧟ ((𝜑 ⊸ 𝜓) & (𝜓 ⊸ 𝜑))) | |
5 | 3, 4 | lb2i 60 | 1 ⊦ (𝜑 ⧟ 𝜓) |
Colors of variables: wff var nilad |
Syntax hints: & wac 30 ⧟ wlb 55 ⊸ wli 61 |
This theorem was proved from axioms: ax-ibot 4 ax-ebot 5 ax-cut 6 ax-init 7 ax-mdco 8 ax-mdas 9 ax-iac 32 ax-eac1 33 ax-eac2 34 |
This theorem depends on definitions: df-lb 56 df-li 62 |
This theorem is referenced by: lbrf 98 lbeui 99 dn 107 mdcob 109 md1 113 md2 114 mccob 116 |
Copyright terms: Public domain | W3C validator |