LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  ilb Structured version  

Theorem ilb 96
Description: Construct a biconditional from its forward and reverse implications.
Hypotheses
Ref Expression
ilb.1 (𝜑𝜓)
ilb.2 (𝜓𝜑)
Assertion
Ref Expression
ilb (𝜑𝜓)

Proof of Theorem ilb
StepHypRef Expression
1 ilb.1 . . 3 (𝜑𝜓)
2 ilb.2 . . 3 (𝜓𝜑)
31, 2iaci 36 . 2 ((𝜑𝜓) & (𝜓𝜑))
4 dflb 93 . 2 ((𝜑𝜓) ⧟ ((𝜑𝜓) & (𝜓𝜑)))
53, 4lb2i 60 1 (𝜑𝜓)
Colors of variables: wff var nilad
Syntax hints:   & wac 30  wlb 55  wli 61
This theorem was proved from axioms:  ax-ibot 4  ax-ebot 5  ax-cut 6  ax-init 7  ax-mdco 8  ax-mdas 9  ax-iac 32  ax-eac1 33  ax-eac2 34
This theorem depends on definitions:  df-lb 56  df-li 62
This theorem is referenced by:  lbrf  98  lbeui  99  dn  107  mdcob  109  md1  113  md2  114  mccob  116
  Copyright terms: Public domain W3C validator