LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  mdcob Structured version  

Theorem mdcob 109
Description: is commutative. Biconditional version of mdco 108.
Assertion
Ref Expression
mdcob ((𝜑𝜓) ⧟ (𝜓𝜑))

Proof of Theorem mdcob
StepHypRef Expression
1 mdco 108 . 2 ((𝜑𝜓) ⊸ (𝜓𝜑))
2 mdco 108 . 2 ((𝜓𝜑) ⊸ (𝜑𝜓))
31, 2ilb 96 1 ((𝜑𝜓) ⧟ (𝜓𝜑))
Colors of variables: wff var nilad
Syntax hints:  wmd 2  wlb 55
This theorem was proved from axioms:  ax-ibot 4  ax-ebot 5  ax-cut 6  ax-init 7  ax-mdco 8  ax-mdas 9  ax-iac 32  ax-eac1 33  ax-eac2 34
This theorem depends on definitions:  df-lb 56  df-li 62
This theorem is referenced by:  md2  114
  Copyright terms: Public domain W3C validator