LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  mdco Structured version  

Theorem mdco 108
Description: is commutative.
Assertion
Ref Expression
mdco ((𝜑𝜓) ⊸ (𝜓𝜑))

Proof of Theorem mdco
StepHypRef Expression
1 ax-init 7 . . 3 (~ (𝜑𝜓) ⅋ (𝜑𝜓))
21mdcod 11 . 2 (~ (𝜑𝜓) ⅋ (𝜓𝜑))
32dfli2i 66 1 ((𝜑𝜓) ⊸ (𝜓𝜑))
Colors of variables: wff var nilad
Syntax hints:  wmd 2  ~ wneg 3  wli 61
This theorem was proved from axioms:  ax-ibot 4  ax-ebot 5  ax-cut 6  ax-init 7  ax-mdco 8  ax-eac1 33  ax-eac2 34
This theorem depends on definitions:  df-lb 56  df-li 62
This theorem is referenced by:  mdcob  109
  Copyright terms: Public domain W3C validator