LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  mdas Structured version  

Theorem mdas 110
Description: is associative.
Assertion
Ref Expression
mdas (((𝜑𝜓) ⅋ 𝜒) ⊸ (𝜑 ⅋ (𝜓𝜒)))

Proof of Theorem mdas
StepHypRef Expression
1 ax-mdas 9 . 2 (~ ((𝜑𝜓) ⅋ 𝜒) ⅋ (𝜑 ⅋ (𝜓𝜒)))
21dfli2i 66 1 (((𝜑𝜓) ⅋ 𝜒) ⊸ (𝜑 ⅋ (𝜓𝜒)))
Colors of variables: wff var nilad
Syntax hints:  wmd 2  wli 61
This theorem was proved from axioms:  ax-ibot 4  ax-ebot 5  ax-cut 6  ax-init 7  ax-mdco 8  ax-mdas 9  ax-eac1 33  ax-eac2 34
This theorem depends on definitions:  df-lb 56  df-li 62
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator