LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  iac Structured version  

Theorem iac 35
Description: & introduction rule. ax-iac 32 has a negation for some reason, this one doesn't.
Hypotheses
Ref Expression
iac.1 (𝜑𝜓)
iac.2 (𝜑𝜒)
Assertion
Ref Expression
iac (𝜑 ⅋ (𝜓 & 𝜒))

Proof of Theorem iac
StepHypRef Expression
1 iac.1 . . . 4 (𝜑𝜓)
21dni1 25 . . 3 (~ ~ 𝜑𝜓)
3 iac.2 . . . 4 (𝜑𝜒)
43dni1 25 . . 3 (~ ~ 𝜑𝜒)
52, 4ax-iac 32 . 2 (~ ~ 𝜑 ⅋ (𝜓 & 𝜒))
65dne1 26 1 (𝜑 ⅋ (𝜓 & 𝜒))
Colors of variables: wff var nilad
Syntax hints:  wmd 2  ~ wneg 3   & wac 30
This theorem was proved from axioms:  ax-ibot 4  ax-ebot 5  ax-cut 6  ax-init 7  ax-mdco 8  ax-iac 32
This theorem is referenced by:  iaci  36  acco  43  acas  44  acasr  45  dismdac  46  extmdac  47  acm1  80
  Copyright terms: Public domain W3C validator