LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  acco Structured version  

Theorem acco 43
Description: & is commutative.
Hypothesis
Ref Expression
acco.1 (𝜑 ⅋ (𝜓 & 𝜒))
Assertion
Ref Expression
acco (𝜑 ⅋ (𝜒 & 𝜓))

Proof of Theorem acco
StepHypRef Expression
1 acco.1 . . 3 (𝜑 ⅋ (𝜓 & 𝜒))
21eac2d 39 . 2 (𝜑𝜒)
31eac1d 37 . 2 (𝜑𝜓)
42, 3iac 35 1 (𝜑 ⅋ (𝜒 & 𝜓))
Colors of variables: wff var nilad
Syntax hints:  wmd 2   & wac 30
This theorem was proved from axioms:  ax-ibot 4  ax-ebot 5  ax-cut 6  ax-init 7  ax-mdco 8  ax-iac 32  ax-eac1 33  ax-eac2 34
This theorem is referenced by:  acm2  81
  Copyright terms: Public domain W3C validator