LLPE Home Linear Logic Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  LLPE Home  >  Th. List  >  acas Structured version  

Theorem acas 44
Description: & is associative.
Hypothesis
Ref Expression
acas.1 (𝜑 ⅋ ((𝜓 & 𝜒) & 𝜃))
Assertion
Ref Expression
acas (𝜑 ⅋ (𝜓 & (𝜒 & 𝜃)))

Proof of Theorem acas
StepHypRef Expression
1 acas.1 . . . 4 (𝜑 ⅋ ((𝜓 & 𝜒) & 𝜃))
21eac1d 37 . . 3 (𝜑 ⅋ (𝜓 & 𝜒))
32eac1d 37 . 2 (𝜑𝜓)
42eac2d 39 . . 3 (𝜑𝜒)
51eac2d 39 . . 3 (𝜑𝜃)
64, 5iac 35 . 2 (𝜑 ⅋ (𝜒 & 𝜃))
73, 6iac 35 1 (𝜑 ⅋ (𝜓 & (𝜒 & 𝜃)))
Colors of variables: wff var nilad
Syntax hints:  wmd 2   & wac 30
This theorem was proved from axioms:  ax-ibot 4  ax-ebot 5  ax-cut 6  ax-init 7  ax-mdco 8  ax-iac 32  ax-eac1 33  ax-eac2 34
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator